精英家教网 > 高中数学 > 题目详情
(2012•浦东新区二模)已知函数f(x)=
2x,0≤x≤
1
2
2-2x,
1
2
<x≤ 1
,且f1(x)=f(x),f2(x)=f(f1(x)).则满足方程f2(x)=x的根的个数为(  )
分析:要求方程f2(x)=x的根的个数,只要确定f1(x)=f(x),f2(x)=f(f1(x))的解析式,因此需要讨论;(1)
0≤x≤
1
2
0≤2x≤
1
2
(2)
0≤x≤
1
2
1
2
<2x≤1
(3)
1
2
<x<1
1
2
<2-2x<1
(4)
1
2
<x<1 
0≤2-2x≤
1
2
,分别求出对应解析式,建立方程求解即可
解答:解;(1 )当
0≤x≤
1
2
0≤2x≤
1
2
0≤x≤
1
4
时,时,f1(x)=f(x)=2x,f2(x)=f(f1(x))=f(2x)=4x,
由4x=x可得,x=0
(2)当
0≤x≤
1
2
1
2
<2x≤1
1
4
<x≤
1
2
时,f1(x)=f(x)=2x,f2(x)=f(f1(x))=f(2x)=2-4x,
由2-4x=x可得,x=
2
5

(3)当
1
2
<x<1
1
2
<2-2x<1
1
2
<x<
3
4
时,f1(x)=2-2x,f2(x)=f(f1(x))=f(2-2x)=2-2(2-2x)=4x-2
由4x-2=x可得,x=
2
3

(4)
1
2
<x<1 
0≤2-2x≤
1
2
3
4
≤x<1
,f1(x)=2-2x,f2(x)=f(f1(x))=f(2-2x)=2(2-2x)=4-4x
由4-4x=x可得x=
4
5

综上可得,x=0,x=
2
5
x=
2
3
x=
4
5

故选C
点评:本题主要考查了分段函数的函数解析式的应用,解题的关键是需要根据不同的x确定f1(x)=f(x),f2(x)=f(f1(x))的解析式
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•浦东新区一模)函数y=
log2(x-2) 
的定义域为
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)若X是一个非空集合,M是一个以X的某些子集为元素的集合,且满足:
①X∈M、∅∈M;
②对于X的任意子集A、B,当A∈M且B∈M时,有A∪B∈M;
③对于X的任意子集A、B,当A∈M且B∈M时,A∩B∈M;
则称M是集合X的一个“M-集合类”.
例如:M={∅,{b},{c},{b,c},{a,b,c}}是集合X={a,b,c}的一个“M-集合类”.已知集合X={a,b,c},则所有含{b,c}的“M-集合类”的个数为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)手机产业的发展催生了网络新字“孖”.某学生准备在计算机上作出其对应的图象,其中A(2,2),如图所示.在作曲线段AB时,该学生想把函数y=x
1
2
,x∈[0,2]
的图象作适当变换,得到该段函数的曲线.请写出曲线段AB在x∈[2,3]上对应的函数解析式
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)设复数z满足|z|=
10
,且(1+2i)z(i是虚数单位)在复平面上对应的点在直线y=x上,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知z=
1
1+i
,则
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i

查看答案和解析>>

同步练习册答案