精英家教网 > 高中数学 > 题目详情
下列说法正确的为
①③④⑤
①③④⑤

①函数y=f(x)与直线x=1的交点个数为0或l;
②集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,则-3≤a≤3;
③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称;
④函数y=lg(x2+x+a)的值域为R 的充要条件是:a∈(-∞,
14
]

⑤与函数y=f(x)-2关于点(1,-1)对称的函数为y=-f(2-x).
分析:①根据函数的定义可知,对任意的x都有唯一的y与之对应,考虑当x=1在与不在定义域内两种情况即可;
②B⊆A,需要考虑集合B为空集;
③函数y=f(2-x)图象上任取一点P(x,y),其关于直线x=2对称对称的点Q(4-x,y),把Q代入y=f(x-2)=f(4-x-2)=f(2-x),可判断;
④函数f(x)=lg(x2+x+a)的值域为R,则△=1-4a≥0,可求a的范围;
⑤在所求函数上取点(x,y),关于点(1,-1)对称点的坐标为(m,n),则x+m=2,y+n=-2,利用代入法可求得结论.
解答:解:①根据函数的定义可知,对任意的x都有唯一的y与之对应,当x=1不在定义域内时,y=f(x)与x=1没有交点,当x=1在定义域时,函数y=f(x)与直线x=l的交点为l个,从而可得y=f(x)与x=1的交点有1个或0个,故①正确
②集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,需要考虑集合B为空集,则a≤3,故②不正确;
③函数y=f(2-x)图象上任取一点P(x,y),关于直线x=2对称对称的点Q(4-x,y),把Q代入y=f(x-2)=f(4-x-2)=f(2-x),即函数y=f(2-x)上的任意一点关于直线x=2对称对称的点在y=f(x-2)上,即y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称,故③正确
④函数f(x)=lg(x2+x+a)的值域为R,则△=1-4a≥0,∴a≤
1
4
,故④正确;
⑤在所求函数上取点(x,y),关于点(1,-1)对称点的坐标为(m,n),则x+m=2,y+n=-2,∴m=2-x,n=-2-y,
∵n=f(m)-2,∴-2-y=f(2-x)-2,即y=-f(2-x),故⑤正确.
故正确的命题为①③④⑤
故答案为①③④⑤
点评:本题主要考查了函数的定义,对数函数的单调性在值域求解中的应用,考查函数的对称性,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的为
②③⑤
②③⑤

    ①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1 },若B⊆A,则-3≤a≤3;
    ②函数y=f(x) 与直线x=1的交点个数为0或1;
    ③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称;
    ④a∈(
14
,+∞)时,函数y=lg(x2+x+a) 的值域为R;
    ⑤与函数 y=f(x)-2关于点(1,-1)对称的函数为y=-f(2-x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2f(x)+f(
1
x
)=-
3
x
(x≠0),则下列说法正确的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的为

①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,则-3≤a≤3;
②函数y=f(x)与直线x=1的交点个数为0或1;
③函数y=f(2-x)与函数y=f(x+2)的图象关于直线x=2对称;
④a∈(
14
,+∞)时,函数y=lg(x2+x+a)的值域为R.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的为
①③④
①③④

①函数y=f(x)与直线x=l的交点个数为0或l;
②a∈(
1
4
,+∞)时,函数y=lg(x2+x+a)的值域为R;
③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称;
④若函数f(x)=ax,则?x1,?x2∈R,都有f(
x1+x2
2
)<
f(x1)+f(x2
2

⑤若函数f(x)=log
2
x
,则?x1,x2∈(0,+∞),都有
f(x1)-f(x2)
x1-x2
<0

查看答案和解析>>

同步练习册答案