精英家教网 > 高中数学 > 题目详情
14.在曲线y=x2(x≥0)上某一点A处作一切线使之与曲线以及x轴所围成的面积为$\frac{1}{12}$,试求:
(1)切点A的坐标;
(2)过切点A的切线方程.

分析 (1)求切点A的坐标及过切点A的切线方程,先求切点A的坐标,设点A的坐标为(a,a2),只须在切点处的切线方程,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率从而得到切线的方程进而求得面积的表达式.最后建立关于a的方程解之即得.
(2)结合(1)求出其斜率k的值即可,即导数值即可求出切线的斜率.从而问题解决.

解答 解:(1)如图示:

设点A的坐标为(a,a2),过点A的切线的斜率为k=y'|x=a=2a,
故过点A的切线l的方程为y-a2=2a(x-a),即y=2ax-a2,令y=0,得x=$\frac{a}{2}$,
则S=S△ABO-S△ABC=-($\frac{1}{2}$•$\frac{a}{2}$•a2-${∫}_{0}^{a}$x2dx)=$\frac{{x}^{3}}{3}$${|}_{0}^{a}$-$\frac{{a}^{3}}{4}$=$\frac{{a}^{3}}{12}$=$\frac{1}{12}$,
∴a=1
∴切点A的坐标为(1,1),
(2)由(1)得:A的坐标为(1,1),
∴k=2x=2,
∴过切点A的切线方程是y=2x-1.

点评 本小题主要考查利用导数研究曲线上某点切线方程、定积分的应用、直线的方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若x,y满足$\left\{\begin{array}{l}x-2≤0\\ x+y≥0\\ x-3y+4≥0\end{array}\right.$,则x+2y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过抛物线y2=4ax(a>0)的焦点F作斜率为-1的直线l,l与离心率为e的双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>0})$的两条渐近线的交点分别为B,C.若xB,xC,xF分别表示B,C,F的横坐标,且$x_F^2=-{x_B}•{x_C}$,则e=(  )
A.6B.$\sqrt{6}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6,7},B={1,2,3,4,6,7},则A∩∁UB=(  )
A.{3,6}B.{5}C.{2,4}D.{2,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\sqrt{2-{2}^{x}}$+lnx的定义域为(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率为$\frac{{\sqrt{6}}}{2}$,则它的渐近线方程为(  )
A.y=±2xB.y=±$\frac{1}{4}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{{\sqrt{2}}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在长方体ABCD-A1B1C1D1中,AB=$\sqrt{3}$,AA1=2,AD=1,E、F分别是AA1和BB1的中点,G是DB上的点,且DG=2GB.
(I)作出长方体ABCD-A1B1C1D1被平面EB1C所截的截面(只需作出,说明结果即可);
(II)求证:GF∥平面EB1C;
(III)设长方体ABCD-A1B1C1D1被平面EB1C所截得的两部分几何体体积分别为V1、V2(V1>V2),求$\frac{{V}_{2}}{{V}_{1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知x∈R,用[x]表示不超过x的最大整数,记{x}=x-[x],若a∈(0,1),且$\{a\}>\{a+\frac{1}{3}\}$,则实数a的取值范围是[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知三条不同的直线a,b,c,若a⊥b,则“a⊥c”是“b∥c”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案