精英家教网 > 高中数学 > 题目详情
(本小题满分14分)如图所示,在四棱锥中,平面
的中点.
(1)证明:平面
(2)若,求二面角的正切值.
解:(1)证明:∵平面,∴
的中点
为△边上的高,


平面。……………………6分
(2)方法1:延长DA、CB相交于点F,连接PF、DB
过点P作PE⊥BC,垂足为E,连接HE
由(1)知平面,则PH⊥BC
又∵PE∩PH=P,∴BC⊥平面PHE,∴BC⊥HE
∴∠PEH就是所求二面角P-BC-D的平面角……………9分
在△FDC中,∵PH=1,AD=1,∴PD=
平面,∴CD⊥平面PAD
∴CD⊥PD,∵PC=,∴CD=4
,∴AB=2,∴BD=
∴AB是△FCD的中位线,FD=CD
∴BD⊥CF
∴HE=
∵PH=1,∴……………14分
方法2:由(1)知平面,如图建立空间直角坐标系.

∵PH=1,AD=1,∴PD=
平面,∴CD⊥平面PAD
∴CD⊥PD,∵PC=,∴CD=4

设平面BCD、平面PBC的法向量分别为
,设
,令,则
,设二面角P-BC-D为
,故
本试题主要是考查了线面垂直和二面角的求解的综合运用。
(1)因平面,∴。∵的中点
为△边上的高,∴。∵
平面
(2)延长DA、CB相交于点F,连接PF、DB过点P作PE⊥BC,垂足为E,连接HE
由(1)知平面,则PH⊥BC又∵PE∩PH=P,∴BC⊥平面PHE,∴BC⊥HE
∴∠PEH就是所求二面角P-BC-D的平面角,然后利用解三角形得到结论。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分9分)  如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<≦1).   

(Ⅰ)求证:对任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是直角梯形,平面,点的中点,且.

(1)求四棱锥的体积;
(2)求证:∥平面
(3)求直线和平面所成的角是正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将正方形ABCD沿对角线BD折成直二面角,有如下四个结论:
①AC⊥BD;②是等边三角形;③所成的角为;④与平面的角。
其中正确的结论的序号是

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知AO为平面的一条斜线,O为斜足,OB为OA在平面内的射影,直线OC在平面内,且,则的大小为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

两个不重合的平面可以把空间分成________部分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列四个正方体中,能得出异面直线AB⊥CD的是(   ) 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

下面三个图中,右面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在左面画出(单位:cm).


(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知矩形的面积为8,当矩形周长取最小值时,沿对角线折起,则三棱锥的外接球的表面积为________

查看答案和解析>>

同步练习册答案