精英家教网 > 高中数学 > 题目详情
设f(x)=和g(x)= (2+x-6x2)的定义域依次为M和N,则M∩N(N)等于(    )

A.[-]                                   B.(-1,1)

C.(-)                                      D.(-1,-]∩[,1)

D

解析:由1-x2>0知-1<x<1即M=(-1,1),由2+x-6x2>0知-<x<,即N=(-,),∴M∩(N)=(-1,-)∪[,1].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=lnx+
b+2x+1
(x>1)
,其中b为实数.
(1)①求证:函数f(x)具有性质P(b);
②求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

10、设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立的是


  1. A.
    ((f°g)•h)(x)=((f•h)°(g•h))(x)
  2. B.
    ((f•g)°h)(x)=((f°h)•(g°h))(x)
  3. C.
    ((f°g)°h)(x)=((f°h)°(g°h))(x)
  4. D.
    ((f•g)•h)(x)=((f•h)•(g•h))(x)

查看答案和解析>>

科目:高中数学 来源:广东 题型:单选题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立的是(  )
A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logax和g(x)=2loga(2x+t-2),(a>0,a≠1,t∈R)的图像在x=2处的切线互相平行.

(Ⅰ)求t的值;

(Ⅱ)设F(x)=g(x)-f(x),当x∈[1,4]时,F(x)≥2恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案