精英家教网 > 高中数学 > 题目详情

已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.

(1)求椭圆的方程;

(2)过点的直线交椭圆于两点,交直线于点,且

.求证:为定值,并计算出该定值.

解(1)由条件得,所以方程为

(2)易知直线斜率存在,令

   

由(1),由(2)

代入有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a3
+
y2
b2
=1(a>b>0)
的右焦点为F,离心率为
2
2
,过点F且与实轴垂直的直线被椭圆截得的线段长为
2
,O为坐标原点.
(I)求椭圆C的方程;
(Ⅱ)设经过点M(0,2)作直线A B交椭圆C于A、B两点,求△AOB面积的最大值;
(Ⅲ)设椭圆的上顶点为N,是否存在直线l交椭圆于P,Q两点,使点F为△PQN的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三5月模拟考试理科数学试卷(解析版) 题型:解答题

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线

于点,线段垂直平分线交于点,求点的轨迹的方程;

(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,

求出的斜率范围,若不存在,说明理由。

 

查看答案和解析>>

同步练习册答案