| A. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z) | B. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) | ||
| C. | [kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z) | D. | [kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z) |
分析 首先通过三角函数的恒等变换,变换成正弦型函数,进一步利用平移变换,最后根据正弦型函数的单调性求得结果.
解答 解:f(x)=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$)的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位,得到
g(x)=2sin(2x+2φ-$\frac{π}{6}$).
∵g(x)≤|g($\frac{π}{6}$)|对x∈R恒成立,
∴g($\frac{π}{6}$)=±1,即2sin(2×$\frac{π}{6}$+2φ-$\frac{π}{6}$)=±1,
∴φ=kπ+$\frac{π}{6}$,(k∈Z)
∵0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
∴g(x)=2sin(2x+$\frac{π}{6}$).
令2x+$\frac{π}{6}$∈[2kπ+$\frac{π}{2}$,2kπ+π],(k∈Z)
则x∈[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)
故选:C.
点评 本题考查的知识要点:三角函数的恒等变换,函数图象的平移变换问题,及函数单调区间问题,属于基础题型.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $m≤\frac{3}{2}\;,\;\;n=\frac{5}{2}$ | B. | m≤3,n=2 | C. | $m>\frac{3}{2}$ | D. | m>3,n=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b<a<c | B. | a<b<c | C. | b<c<a | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com