精英家教网 > 高中数学 > 题目详情
6.将函数f(x)=$\sqrt{3}$sin2x-cos2x的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位长度后得到函数y=g(x)的图象,若g(x)≤|g($\frac{π}{6}$)|对x∈R恒成立,则函数y=g(x)的单调递减区间是(  )
A.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)B.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)
C.[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)D.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z)

分析 首先通过三角函数的恒等变换,变换成正弦型函数,进一步利用平移变换,最后根据正弦型函数的单调性求得结果.

解答 解:f(x)=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$)的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位,得到
g(x)=2sin(2x+2φ-$\frac{π}{6}$).
∵g(x)≤|g($\frac{π}{6}$)|对x∈R恒成立,
∴g($\frac{π}{6}$)=±1,即2sin(2×$\frac{π}{6}$+2φ-$\frac{π}{6}$)=±1,
∴φ=kπ+$\frac{π}{6}$,(k∈Z)
∵0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
∴g(x)=2sin(2x+$\frac{π}{6}$).
令2x+$\frac{π}{6}$∈[2kπ+$\frac{π}{2}$,2kπ+π],(k∈Z)
则x∈[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)
故选:C.

点评 本题考查的知识要点:三角函数的恒等变换,函数图象的平移变换问题,及函数单调区间问题,属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.经过抛物线y=4x2的焦点作直线l交该抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=2,则线段AB的长等于$\frac{17}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{\begin{array}{l}|{x+1}|\;,\;\;x≤-1\\ 2x\;,\;\;-1<x<2\\ x-1\;,\;\;x≥2\end{array}\right.$,则f[f(-2)]=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线y=5与y=-1在区间$[{0\;,\;\;\frac{4π}{ω}}]$上截曲线$y=msin\frac{ω}{2}x+n({m>0\;,\;\;n>0})$所得弦长相等且不为零,则下列描述正确的是(  )
A.$m≤\frac{3}{2}\;,\;\;n=\frac{5}{2}$B.m≤3,n=2C.$m>\frac{3}{2}$D.m>3,n=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y满足$\left\{\begin{array}{l}{x-y≥0}\\{x+y-4≥0}\\{x≤4}\end{array}\right.$,则z=4x+y的最小值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a=${4}^{\frac{1}{2}}$,b=${2}^{\frac{1}{3}}$,c=${5}^{\frac{1}{2}}$,则a、b、c的大小关系为(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在数列{an}中,a1=1,an+1=2an+n-1,n∈N*
(1)证明:数列{an+n}是等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知平面BCC1B1是圆柱的轴截面(经过圆柱的轴截面)BC是圆柱底面的直径,O为底面圆心,E为母线CC1的中点,已知AB=AC=AA1=4
(1)求证:B1O⊥平面AEO
(2)求二面角B1-AE-O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{3x-y≤a}\end{array}\right.$,目标函数z=x+2y的最小值为1,则实数a的值为3.

查看答案和解析>>

同步练习册答案