精英家教网 > 高中数学 > 题目详情
已知曲线C:
x|x|
a2
-
y|y|
b2
=1
,下列叙述中错误的是(  )
A、垂直于x轴的直线与曲线C只有一个交点
B、直线y=kx+m(k,m∈R)与曲线C最多有三个交点
C、曲线C关于直线y=-x对称
D、若P1(x1,y1),P2(x2,y2)为曲线C上任意两点,则有
y1-y2
x1-x2
>0
分析:设曲线C上的任一点M的坐标,进而求得其关于直线y=-x对称点,分别代入曲线方程可知两个曲线方程截然不同,进而可推断曲线C不可能关于直线y=-x对称.
解答:解:设曲线C上的任一点M的坐标为(x0,y0),x0>0,y0>0则有
x
2
0
a2
-
y
2
0
b2
=1
为双曲方程,焦点在x轴
且则其关于直线y=-x的对称点M′为(-y0,-x0)代入曲线方程中得
y
2
0
a2
-
x
2
0
b2
=1
为双曲线方程,焦点在y轴,
则可知曲线C不可能关于直线y=-x对称
故选C.
点评:本题主要考查了圆锥曲线的共同特征.考查了学生对圆锥曲线基本知识的掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:
x|x|
a2
-
y|y|
b2
=1
,给出以下结论:
①垂直于x轴的直线与曲线C只有一个交点
②直线y=kx+m(k,m∈R)与曲线C最多有三个交点
③曲线C关于直线y=-x对称
④若P1(x1,y1),P2(x2,y2)为曲线C上任意两点,则有
y1-y2
x1-x2
>0

写出正确结论的序号
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:已知曲线C:在点P(1,1)处的切线与x轴交于点Q1,再过Q1点作x轴的垂线交曲线C于点P1,再过P1作C的切线与x轴交于点Q2,依次重复下去,过Pn(xn,yn)作C的切线与x轴交于点Qn(xn+1,O).
(1)求数列{xn}的通项公式;
(2)求△OPnPn+1的面积;
(3)设直线OPn的斜率为kn,求数列nkn的前n项和Sn,并证明Sn
79

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

同步练习册答案