精英家教网 > 高中数学 > 题目详情
一块形状为直角三角形的铁皮,直角边长分别为40cm与60cm现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?
如图,剪出的矩形为CDEF,设CD=x,CF=y,则AF=40-y,
∵△AFE∽△ACB,
,即
∴y=40-x,
剩下的残料面积为
S=×60×40-x·y=x2-40x+1200=(x-30)2+600,
∵0<x<60,
∴当x=30时,S取最小值为600,这时y=20,
∴在边长60cm的直角边CB上截CD=30cm,
在边长为40cm的直角边AC上截CF=20cm时,能使所剩残料最少.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一块形状为直角三角形的铁皮,直角边长分别是60cm与80cm,现在将它剪成一个矩形,并以此三角形的直角为矩形的一个角,求出矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一块形状为直角三角形的铁皮,直角边长分别为40cm和60cm,现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪才能使剩下的残料最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

一块形状为直角三角形的铁皮,直角边长分别是40cm与60cm,现在将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?并求出此时的残料面积.

查看答案和解析>>

科目:高中数学 来源:2014届山西省高一第二学期第二次月考数学试卷(解析版) 题型:解答题

一块形状为直角三角形的铁皮,直角边长分别为40cm与60cm现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?

 

查看答案和解析>>

科目:高中数学 来源:2014届度河南省许昌六校高一上学期第一次联考数学试卷 题型:解答题

一块形状为直角三角形的铁皮,直角边长分别是40cm与60cm,现在将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少? 并求出此时的残料面积。

 

查看答案和解析>>

同步练习册答案