精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=8,an+1=(1+
1
n+1
an+(n+2)(2n+3),(n∈N*)

(1)设bn=
an
n+1
,求数列{bn}的通项公式;
(2)设cn=
bn+1
bn-1
,求数列{cn}的前n项和Sn
分析:(1)将已知等式的两边同时除以n+2,得到
an+1
n+2
-
an
n+1
=2n+3
即bn+1-bn=2n+3,利用逐差相加法求出数列{bn}的通项公式;
(2)求出cn=
bn+1
bn-1
=1+
1
n
-
1
n+2
,利用裂项相消的方法求出数列{cn}的前n项和Sn
解答:解:(1)因为a1=8,an+1=(1+
1
n+1
an+(n+2)(2n+3),(n∈N*)

所以
an+1
n+2
-
an
n+1
=2n+3

所以bn+1-bn=2n+3
所以b2-b1=5
b3-b2=7

bn-bn-1=2n+3
相加得
bn=(n+1)2
(2)cn=
bn+1
bn-1
=1+
1
n
-
1
n+2

所以前n项和Sn=n+(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)…+( 
1
n
-
1
n+2
)

=n+1+
1
2
-
1
n+1
-
1
n+2

=n+
3
2
-
1
n+1
-
1
n+2
点评:求数列的前n项和的方法,应该先求出数列的通项,利用通项的特点选择合适的求和方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案