精英家教网 > 高中数学 > 题目详情
(b-2)2
=2-b,则实数b的取值范围是
 
考点:根式与分数指数幂的互化及其化简运算
专题:计算题
分析:根据绝对值的意义得到b-2≤0,从而求出b的范围.
解答: 解:∵
(b-2)2
=|b-2|=2-b,
∴b-2≤0,
∴b≤2,
故答案为:(-∞,2].
点评:本题考查了根式的化简,考查了绝对值的意义,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将函数f(x)=sinx图象上每个点的横坐标变为原来的
1
2
倍(纵坐标不变),再奖得到的图象向右平移
π
12
个单位长度,记所得图象的函数解析式为y=g(x),则g(
π
4
)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若loga
3
4
≥1,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x2-3x-10≤0},B={x|m-1<x<2m+1}
(Ⅰ)当m=3时,求A∩B.
(Ⅱ)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x),x∈[a,b]的图象与x=1的交点个数是(  )
A、1B、2C、0或1D、1或2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|3≤x≤7},C={x|x<a},若A是C的真子集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x-2y-1=0,直线l1过点(-1,2).
(1)若l1⊥l,求直线l1与l的交点坐标;
(2)若l1∥l,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-2ax+3,求f(x)在区间[1,5]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四组函数中,f(x)与g(x)是同一函数的一组是(  )
A、f(x)=|x|,g(x)=
x2
B、f(x)=x,g(x)=(
x
2
C、f(x)=
x2-1
x-1
,g(x)=x+1
D、f(x)=1,g(x)=x0

查看答案和解析>>

同步练习册答案