精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=2x2-kx+1在区间[1,3]上是单调函数,则实数k的取值范围为(-∞,4]∪[12,+∞).

分析 对称轴为x=$\frac{k}{4}$,函数f(x)=2x2-kx+1在区间[1,3]上是单调函数,得$\frac{k}{4}$≤1,或$\frac{k}{4}$≥3求解即可

解答 解:∵函数f(x)=2x2-kx+1
∴对称轴为x=$\frac{k}{4}$,
∵函数f(x)=2x2-kx+1在区间[1,3]上是单调函数,
∴$\frac{k}{4}$≤1或$\frac{k}{4}$≥3,
即k≤4或k≥12,
故答案为:(-∞,4]∪[12,+∞).

点评 本题考查了二次函数的单调性,对称性,难度不大,属于容易题,关键是确定对称轴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若不等式$\frac{t}{{{t^2}+2}}≤μ≤\frac{t+2}{t^2}$,对任意的t∈(0,1]上恒成立,则μ的取值范围是(  )
A.$[{\frac{1}{13},2}]$B.[$\frac{2}{13}$,1]C.$[{\frac{1}{6},6}]$D.$[{\frac{1}{3},3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.重庆八中大学城校区与本部校区之间的驾车单程所需时间为T,T只与道路畅通状况有关,对其容量为500的样本进行统计,结果如下:
T(分钟)25303540
频数(次)10015020050
以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.
(1)求T的分布列与P(T<E(T));
(2)某天有3位教师独自驾车从大学城校区返回本部校区,记X表示这3位教师中驾车所用时间少于E(T)的人数,求X的分布列与E(X);
(3)下周某天张老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求张老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,平面ABE⊥平面ABCD,四边形ABCD为直角梯形,∠CBA=90°,AD∥BC∥EF,△ABE为等边三角形,AB=2$\sqrt{3}$,BC=2,AD=4,EF=3
(Ⅰ)求证:平面CDF⊥平面ABCD;
(Ⅱ)求直线AF与平面CDF所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a>0,b>0,且2-log2a=3-log3b=log6$\frac{1}{a+b}$,则$\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{108}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在R上的偶函数f(x)满足f(x+4)=-f(x),且在区间[0,4]上市减函数,则f(10)、f(13)、f(15)这三个函数值从小到大排列为f(13)<f(10)<f(15).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$a={2^{\frac{1}{2}}},b={(\frac{1}{2})^2},c={log_2}\frac{1}{2}$,则三个数的大小关系正确的是(  )
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A={(x,y)||x|≤2,|y|≤2,x,y∈Z},集合B={(x,y)|(x-2)2+(y-2)2≤4,x,y∈Z},在集合A中任取一个元素p,则p∈B的概率是$\frac{6}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)={x^2}+4[sin(θ+\frac{π}{3})]•x-2$,θ∈[0,2π)
(1)若函数f(x)是偶函数:①求tanθ的值;②求$\sqrt{3}sinθ•cosθ+{cos^2}θ$的值.
(2)若f(x)在$[-\sqrt{3},1]$上是单调函数,求θ的取值范围.

查看答案和解析>>

同步练习册答案