精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)求f(x)的定义域;
(Ⅱ) 讨论f(x)的单调性;
(Ⅲ) 解不等式f(2x)>f-1(x).

解:(Ⅰ)由题意,ax>1=a0,因为0<a<1,所以x<0,
即f(x)的定义域为{x|x<0}…(2分)
(Ⅱ)函数f(x)在(-∞,0)上是单调递增的.…(4分)
令函数u(x)=ax-1,
因为0<a<1
所以u(x)=ax-1在(-∞,0)上是单调递减的,
又因为g(x)=logax也是单调递减的,
由复合函数的单调性知,
复合函数f(x)=g(u(x))在(-∞,0)上是单调递增的.…(8分)
(Ⅲ)由题知,x∈R…(10分)
于是不等式f(2x)>f-1(x)等价为a2x-1<ax+1即:(ax-2)(ax+1)<0
从而,所以x>loga2,又须2x<0,
综上,原不等式的解集为{x|loga2<x<0}…(12分)
分析:(Ⅰ)对数函数的定义域为真数大于0,由此可求f(x)的定义域;
(Ⅱ)令函数u(x)=ax-1,从而可知u(x)=ax-1在(-∞,0)上是单调递减的,又因为g(x)=logax也是单调递减的,由复合函数的单调性,可得f(x)的单调性.…(8分)
(Ⅲ)由题知,从而不等式f(2x)>f-1(x)等价为a2x-1<ax+1,从而可求不等式的解集.
点评:本题以对数函数为载体,考查对数函数的定义域,考查复合函数的单调性,同时考查不等式的解法,考查学生等价转化问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源:《第2章 基本初等函数(Ⅰ)》2012年单元测试卷(南宁外国语学校)(解析版) 题型:解答题

已知函数
(Ⅰ)求f(x)的反函数f-1(x);
(Ⅱ)讨论f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省宿州市泗县双语中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)求f{f[f(4)]}的值,
(2)画出函数图象,并找出函数递增区间.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年天津一中高三(上)第一次月考数学试卷(文科)(解析版) 题型:解答题

已知函数
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2011年人教A版模块考试数学试卷4(必修4)(解析版) 题型:解答题

已知函数
(Ⅰ)求f(x)的定义域;
(Ⅱ)若角α在第一象限且,求f(α).

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省保定二中高三第三次大考数学试卷(文理合卷)(解析版) 题型:解答题

已知函数
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案