精英家教网 > 高中数学 > 题目详情

【题目】一企业从某条生产线上随机抽取30件产品,测量这些产品的某项技术指标值,得到如下的频数分布表:

频数

2

6

18

4

(I)估计该技术指标值的平均数和众数(以各组区间的中点值代表该组的取值)

(II) ,则该产品不合格,其余的是合格产品,从不合格的产品中随机抽取2件,求抽取的2件产品中技术指标值小于的产品恰有1件的概率.

【答案】见解析

【解析】(I) 该技术指标值的平均数为……3分.

众数是……5分.

(II)设组的4件产品分别组的两件产品分别,则从不合格的产品中随机抽取2件所有基本结果为:

共15种,……………………………………………………………………………………8分

其中抽取的2件产品中技术指标值小于的产品恰有1件的基本结果为共8种,所以其概率为.……………………………………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中,且.

(1)值;

(2)为自然对数的底数,求证:当时,

(3)若函数上的单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)试判断f (x)的单调性,并证明你的结论;
(2)若f (x)为定义域上的奇函数,求函数f (x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别,设点,=2.

(1)求椭圆C的方程;

(2)已知四边形MNPQ的四个顶点均在曲线C上,且MQ∥NP,MQ⊥x轴,若直线MN和直线QP交于点S(4,0).判断四边形MNPQ两条对角线的交点是否为定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品x(百台),总成本为C(x)(万元),其中固定成本为2万元,每生产1百台,成本增加1万元,销售收入 (万元),假定该产品产销平衡.
(1)若要该厂不亏本,产量x应控制在什么范围内?
(2)该厂年产多少台时,可使利润最大?
(3)求该厂利润最大时产品的售价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:(1)函数f(x)在[0,+∞)上是增函数,在(﹣∞,0)上也是增函数,所以f(x)在R上是增函数;(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0,且a>0; (3)y=x2﹣2|x|﹣3的递增区间为[1,+∞);(4)函数y=lg10x和函数y=elnx表示相同函数.其中正确命题的个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 ,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四种说法: ①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y= + 与y= 都是奇函数;
④函数y=(x﹣1)2与y=2x1在区间[0,+∞)上都是增函数.
其中正确的序号是(把你认为正确叙述的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某城市气象部门的数据中,随机抽取了100天的空气质量指数的监测数据如表:

空气质量指数t

(0,50]

(50,100]

(100,150]

(150,200]

(200,300]

质量等级

轻微污染

轻度污染

中度污染

严重污染

天数K

5

23

22

25

15

10

(1)在该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t(t取整数)存在如下关系y=,且当t>300时,y>500估计在某一医院收治此类病症人数超过200人的概率;

(2)若在(1)中,当t>300时,y与t的关系拟合于曲线,现已取出了10对样本数据(ti,yi)(i=1,2,3,…,10),且,求拟合曲线方程.

(附:线性回归方程=a+bx中,b=,a=﹣b

查看答案和解析>>

同步练习册答案