精英家教网 > 高中数学 > 题目详情
18.若an+1+(-1)nan=2n-1,则S40=820.

分析 an+1+(-1)nan=2n-1,可得:a2k+1+a2k=4k-1,a2k-a2k-1=4k-3,a2k+2-a2k+1=4k+1.于是a2k+1+a2k-1=2,a2k+a2k+2=8k.即可得出.

解答 解:∵an+1+(-1)nan=2n-1,
∴a2k+1+a2k=4k-1,a2k-a2k-1=4k-3,a2k+2-a2k+1=4k+1.
可得a2k+1+a2k-1=2,a2k+a2k+2=8k.
则S40=2×10+8(1+3+…+19)
=20+8×$\frac{10×(1+19)}{2}$
=820.
故答案为:820.

点评 本题考查了等差数列的前n项和公式、“分组求和”方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知幂函数f(x)满足f($\frac{\sqrt{3}}{3}$)=3$\sqrt{3}$,则f(x)的表达式是(  )
A.f(x)=x-3B.f(x)=x3C.f(x)=3-xD.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若实数a,b,c,d满足a2-lna=b,c-2=d,则$\sqrt{(a-c)^{2}+(b-d)^{2}}$的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.请写出一个定义域和值域都是[-1,1]的函数:f(x)=x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线y=-a与y=tan2x的图象的相邻两个交点的距离是(  )
A.$\frac{π}{2}$B.πC.D.与a的大小有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,求$\frac{2cos(π-α)-sin(π+α)}{4cos(-α)+sin(2π-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}中,a1=1,a2=$\frac{1}{4}$,且$\frac{1}{n{a}_{n+1}}$-$\frac{1}{(n-1){a}_{n}}$=-$\frac{1}{n-1}$+$\frac{1}{n}$.
(1)求数列{an}的通项公式;
(2)求证:a12+a22+…+an2<$\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于函数$f(x)=4sin(2x-\frac{π}{3})(x∈R)$,有以下命题:
(1)$y=f(x+\frac{π}{6})$是奇函数;
(2)要得到g(x)=4sin2x的图象,只需将f(x)的图象向右平移$\frac{π}{3}$个单位;
(3)y=f(x)的图象关于直线$x=-\frac{π}{12}$对称;
(4)y=f(x)在$[0,\frac{5π}{12}]$上单调递增,
其中正确的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知x>y>0,求证:$\sqrt{x}$-$\sqrt{y}$$<\sqrt{x-y}$.

查看答案和解析>>

同步练习册答案