精英家教网 > 高中数学 > 题目详情
9.甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如表:
平均成绩$\overline x$89898685
方差S22.13.52.15.6
从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是(  )
A.B.C.D.

分析 甲的平均成绩高且发挥稳定,故最佳人选是甲.

解答 解:由四人的平均成绩和方差表知:
甲、乙两人的平均成绩最高,都是89,
甲、丙的方差最小,都是2.1,
从而得到甲的平均成绩高且发挥稳定,故最佳人选是甲.
故选:A.

点评 本题考查平均数、方差的求法及应用,是基础题,解题时要认真审题,注意、平均数、方差性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R,则函数f(x)的单调递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.($\frac{64}{27}$)${\;}^{\frac{1}{3}}$+log3$\frac{10}{9}$+log3$\frac{9}{10}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合P满足{1,2}⊆P⊆{0,1,2,3,4},满足条件的P的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={-1,0,1},$B=\left\{x\right.|\frac{x+1}{x-1}\left.{<0}\right\}$,则A∩B={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知{an}为等比数列,Sn是它的前n项和.若${a_3}{a_5}=\frac{1}{4}{a_1}$,且a4与a7的等差中项为$\frac{9}{8}$,则S5为31.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若将函数y=cos(2x)的图象向左平移$\frac{π}{12}$个单位长度,则平移后的函数对称轴为$x=\frac{kπ}{2}-\frac{π}{12}({k∈Z})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列四个命题中,正确的是②③④(写出所有正确命题的序号)
①函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
②设集合A={-1,0,1},B={-1,1},则在A到B的所有映射中,偶函数共有4个;
③不存在实数a,使函数$f(x)={π^{a{x^2}+2ax+3}}$的值域为(0,1]
④函数$f(x)={log_{\frac{1}{2}}}({x^2}-ax+3a)$在[2,+∞)上是减函数,则-4<a≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(1)设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点(0,4),离心率为$\frac{3}{5}$,求C的标准方程;
(2)已知抛物线的准线方程是y=-2,求抛物线的标准方程.

查看答案和解析>>

同步练习册答案