精英家教网 > 高中数学 > 题目详情

(本小题满分16分)

如图,在平面直角坐标系中,已知点为椭圆的右顶点, 点,点在椭

圆上, .

 

(1)求直线的方程;

(2)求直线被过三点的圆截得的弦长;

(3)是否存在分别以为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.

 

【答案】

(1) ;(2)

(3)存在这样的两个圆,且方程分别为,

【解析】(1)根据,B、P关于y轴对称,可求得,再求出BD的斜率,写出点斜式方程,再化成一般式即可.

(2)先求出BP的垂直平分线方程,然后利用点到直线的距离公式求出圆心到此平分线的距离,再利用弦长公式求出弦长即可.

(3)解本小题的关系是先假设存在这样的两个圆M与圆N,其中PB是圆M的弦,PA是圆N的弦,从而分析出点M一定在y轴上,点N一定在线段PC的垂直平分线上,当圆和圆是两个相外切的等圆时,一定有P,M,N在一条直线上,且PM=PN.到此就有了明晰的解题思路.

(1)因为,且A(3,0),所以=2,而B,P关于y轴对称,所以点P的横坐标为1,从而得……………………3分         

所以直线BD的方程为…………………………5分

(2)线段BP的垂直平分线方程为x=0,线段AP的垂直平分线方程为,

所以圆C的圆心为(0,-1),且圆C的半径为………………………8分

又圆心(0,-1)到直线BD的距离为,所以直线被圆截得的弦长

……………………………10分

(3)假设存在这样的两个圆M与圆N,其中PB是圆M的弦,PA是圆N的弦,则点M一定在y轴上,点N一定在线段PC的垂直平分线上,当圆和圆是两个相外切的等圆时,一定有P,M,N在一条直线上,且PM=PN…………………………………12分

,则,根据在直线上,

解得………………………14分

所以,故存在这样的两个圆,且方程分别为

,……………………………16分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010江苏卷)18、(本小题满分16分)

在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M,其中m>0,

(1)设动点P满足,求点P的轨迹;

(2)设,求点T的坐标;

(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。

查看答案和解析>>

科目:高中数学 来源:2010年泰州中学高一下学期期末测试数学 题型:解答题

(本小题满分16分)
函数(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,对任意时,恒成立,求实数的范围;
(Ⅲ)如果,当“对任意恒成立”与“内必有解”同时成立时,求 的最大值.

查看答案和解析>>

科目:高中数学 来源:2014届江苏大丰新丰中学高二上期中考试文数学试卷(解析版) 题型:解答题

(本小题满分16分)     本题请注意换算单位

某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米。已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元。

(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;

(总开发费用=总建筑费用+购地费用)

(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省蚌埠市高二下学期期中联考文科数学试卷(解析版) 题型:解答题

(本小题满分16分)设命题:方程无实数根; 命题:函数

的值域是.如果命题为真命题,为假命题,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高一第三阶段检测数学卷 题型:解答题

(本小题满分16分)

已知函数f(x)=为偶函数,且函数yf(x)图象的两相邻对称轴间的距离为

(Ⅰ)求f)的值;

(Ⅱ)将函数yf(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数yg(x)的图象,求g(x)的单调递减区间.

 

查看答案和解析>>

同步练习册答案