精英家教网 > 高中数学 > 题目详情
f(x)=
2x(x≥0)
x+a(x<0)
是R上的增函数,则a的范围是(  )
A、[1,+∞)
B、(-∞,1]
C、[2,+∞)
D、(-∞,2]
考点:指数函数单调性的应用
专题:函数的性质及应用
分析:运用函数的单调性,可判断两段的最值比较即可.
解答: 解:∵f(x)=
2x(x≥0)
x+a(x<0)
是R上的增函数,
∴f(0)=20=1,
y=a+x,当x=0时y=a,
∴a≤1,
故选:B
点评:本题运用函数的单调性,结合函数的最值判断字母范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={x|ax2-2(a+1)x-1>0},M≠∅,M⊆{x|x>0},则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x2+x-2,判断并证明它的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上是奇函数,在[a,b](a<b)上是减函数,判断并利用定义证明f(x)在[-b,-a]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2015cos(ωx+φ)(ω>0,0<φ<π),满足f(-x)=-f(x),其图象与直线y=0的某两个交点的横坐标分别为x1,x2,|x1-x2|的最小值为π,则(  )
A、ω=2,φ=
π
4
B、ω=2,φ=
π
2
C、ω=1,φ=
π
4
D、ω=1,φ=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求过点A(2,3)且垂直于直线2x+y-5=0的直线方程.
(2)从点A(-4,1)出发的一束光线l,经过直线l1:x-y+3=0反射,反射光线恰好通过点B(1,6),求入射光线l所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式
|x+2|
x2-(1+a)x+a
>0.
(1)当a=2时,求不等式解集;
(2)当a>-2时,求不等式解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的减函数,且f(x+y)=f(x)+f(y),f(1)=1.若f(x)满足不等式f(2x+1)>f(x)+2,则实数x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在区间[-b,-a]上为减函数,且在此区间上,y=f(x)最小值为2,则函数y=f(x)在区间[a,b]上是(  )
A、增函数且最大值为2
B、增函数且最小值为-2
C、减函数且最大值为-2
D、减函数且最小值为2

查看答案和解析>>

同步练习册答案