精英家教网 > 高中数学 > 题目详情
已知双曲线与椭圆可
x2
9
+
y2
25
=1
共焦点,它们的离心率之和为
14
5
,求双曲线方程.
分析:先根据椭圆方程求得椭圆的焦点和离心率,进而根据题意求得双曲线的焦点和离心率,进而求得双曲线方程得长轴和短轴,则双曲线方程可得.
解答:解:依题意可知椭圆方程中a=5,b=3,
∴c=
25-9
=4
∴椭圆焦点为F(O,±4),离心率为e=
4
5

所以双曲线的焦点为F(O,±4),离心率为2,
从而双曲线中
a2+b2=16
c
a
=2

求得c=4,a=2,b=2
3

所以所求双曲线方程为
y2
4
-
x2
12
=1
点评:本题主要考查了双曲线的标准方程和圆锥曲线的共同特征.考查了学生对圆锥曲线的综合理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下5个命题:
①曲线x2-(y-1)2=1按
a
=(1,-2)
平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,|
PA
|-|
PB
|=n
,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量
AB
AP
夹角为锐角θ,且满足 |
PB
| |
AB
| +
PA
AB
=0
,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源:江西省临川十中2011-2012学年高二下学期期中考试数学理科试题 题型:022

以下四个关于圆锥曲线的命题中:

①设AB为两个定点,k为正常数,||+||=k,则动点P的轨迹为椭圆;

②双曲线与椭圆+y2=1有相同的焦点;

③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;

④已知点P(x,y)的坐标满足方程|3x+4y-15|=5,则点P的轨迹是一条直线.

其中真命题的序号为________.

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期期中考试理科数学试卷(解析版) 题型:填空题

以下四个关于圆锥曲线的命题中:

①设A、B为两个定点,k为正常数,,则动点P的轨迹为椭圆;

②双曲线与椭圆有相同的焦点;

③方程的两根可分别作为椭圆和双曲线的离心率;

④已知点P(x,y)的坐标满足方程,则点P的轨迹是一条直线.

其中真命题的序号为        _______

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省鄂州市高三期中考试文科数学 题型:填空题

以下四个关于圆锥曲线的命题中:

①设A、B为两个定点,k为正常数,,则动点P的轨迹为椭圆;

②双曲线与椭圆有相同的焦点;

③方程的两根可分别作为椭圆和双曲线的离心率;

④已知点P(x,y)的坐标满足方程,则点P的轨迹是一条直线.

其中真命题的序号为        _______

 

查看答案和解析>>

科目:高中数学 来源:2012届四川省绵阳市高二上学期期末教学质量测试数学试题 题型:填空题

下列四个关于圆锥曲线的命题:

①已知M(-2,0)、N(2,0),|PM|+|PN|=3,则动点P的轨迹是一条线段;

②从双曲线的一个焦点到一条渐近线的距离等于它的虚半轴长;

③双曲线与椭圆有共同的准线;

④关于x的方程x2-mx+1=0(m>2)的两根可分别作为椭圆和双曲线的离心率.

其中正确的命题是         .(填上你认为正确的所有命题序号)

 

查看答案和解析>>

同步练习册答案