精英家教网 > 高中数学 > 题目详情

如图2,四边形为矩形,平面,作如图3折叠,折痕.其中点分别在线段上,沿折叠后点在线段上的点记为,并且.

(1)证明:平面
(2)求三棱锥的体积.

(1)详见解析;(2).

解析试题分析:(1)由平面结合平面与平面垂直的判定定理的得到平面平面,利用平面与平面垂直的性质定理得到平面,从而得到,然后利用并结合直线与平面垂直的判定定理证明平面;(2)在(1)的条件平面下,以作为三棱锥的高,作为三棱锥的底面计算三棱锥的体积.
(1)证明:平面平面平面平面
而平面平面平面
平面
平面
平面,且
平面
(2)平面
又易知,从而
,即


.
考点:本题以折叠图形为考查形式,考查直线与平面垂直的判定以及利用等体积法计算三棱锥的体积,属于中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合.
(1)当点M是EC中点时,求证:BM//平面ADEF;
(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,多面体的直观图及三视图如图所示,分别为的中点.
(1)求证:平面
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平行四边形中,,将沿折起到的位置.
(1)求证:平面
(2)当取何值时,三棱锥的体积取最大值?并求此时三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥P﹣ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC=3,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:DC∥平面PAB;
(2)求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知矩形是圆柱体的轴截面,分别是下底面圆和上底面圆的圆心,母线长与底面圆的直径长之比为,且该圆柱体的体积为,如图所示.

(1)求圆柱体的侧面积的值;
(2)若是半圆弧的中点,点在半径上,且,异面直线所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

将60个完全相同的球叠成正四面体球垛,使剩下的球尽可能少,那么剩余的球的个数是      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于         

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在斜二测画法下,四边形A′B′C′D′是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是多少?

查看答案和解析>>

同步练习册答案