分析 求函数的导数,利用导数研究函数的单调性,结合函数最值和导数之间的关系进行求解即可.
解答 解:函数的导数f′(x)=-$\frac{2}{(x-1)^{2}}$+$\frac{1}{(x-5)^{2}}$=$\frac{2(x-5)^{2}-(x-1)^{2}}{(x-1)^{2}(x-5)^{2}}$=$\frac{{x}^{2}-18x+49}{(x-1)^{2}(x-5)^{2}}$,
由f′(x)=0得x2-18x+49=0得x=$\frac{18±\sqrt{1{8}^{2}-4×49}}{2}$=$\frac{18±8\sqrt{2}}{2}$=9±4$\sqrt{2}$,
∵x∈(1,5),
∴x=9-4$\sqrt{2}$,
当1<x<9-4$\sqrt{2}$时,f′(x)<0,函数单调递减,
当9-4$\sqrt{2}$<x<5时,f′(x)>0,函数单调递增,
故当x=9-4$\sqrt{2}$时,函数f(x)取得极小值,同时也是最小值,此时f(9-4$\sqrt{2}$)=$\frac{2}{9-4\sqrt{2}-1}$+$\frac{1}{5-9+4\sqrt{2}}$
=$\frac{2}{8-4\sqrt{2}}$+$\frac{1}{4\sqrt{2}-4}$=$\frac{1}{4-2\sqrt{2}}$+$\frac{1}{4\sqrt{2}-4}$=$\frac{4+2\sqrt{2}}{16-8}$+$\frac{4\sqrt{2}+4}{32-16}$=$\frac{4+2\sqrt{2}}{8}$+$\frac{4\sqrt{2}+4}{16}$
=$\frac{2+\sqrt{2}}{4}$+$\frac{\sqrt{2}+1}{4}$=$\frac{3+2\sqrt{2}}{4}$,
故答案为:$\frac{3+2\sqrt{2}}{4}$
点评 本题主要考查函数最值的求解,求函数的导数,利用导数研究函数的单调性和最值是解决本题的关键.考查学生的运算和推理能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4\sqrt{35}}{35}$ | B. | $\frac{\sqrt{35}}{70}$ | C. | $\frac{2\sqrt{35}}{35}$ | D. | $\frac{2}{35}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com