数列
满足
(
).
①存在
可以生成的数列
是常数数列;
②“数列
中存在某一项
”是“数列
为有穷数列”的充要条件;
③若
为单调递增数列,则
的取值范围是
;
④只要
,其中
,则
一定存在;
其中正确命题的序号为 .
科目:高中数学 来源: 题型:
| 9n+4 | an+5 |
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省南京市、盐城市高三第一次模拟考试数学(解析版) 题型:解答题
(本小题满分16分) [已知数列
满足
,![]()
.
(1)求数列
的通项公式
;
(2)若对每一个正整数
,若将
按从小到大的顺序排列后,此三项均能构成等
差数列, 且公差为
.①求
的值及对应的数列
.
②记
为数列
的前
项和,问是否存在
,使得
对任意正整数
恒成立?若存
在,求出
的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江苏省南通市高三第二次模拟考试数学试题 题型:解答题
已知数列
满足
.
(1)求数列
的通项公式;
(2)对任意给定的
,是否存在
(
)使
成等差数列?若存
在,用
分别表示
和
(只要写出一组);若不存在,请说明理由;
(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为
.
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
| 9n+4 |
| an+5 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分16分)
已知数列
满足
.
(1)求数列
的通项公式;
(2)对任意给定的
,是否存在
(
)使
成等差数列?若存
在,用
分别表示
和
(只要写出一组);若不存在,请说明理由;
(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com