精英家教网 > 高中数学 > 题目详情

如图,平面PCBM⊥平面ABC,∠PCB=90°,PMBC,直线AM与直线PC所成的角为60°,又AC=1,BC=2PM=2,∠ACB=90°      

(Ⅰ)求证:ACBM;

(Ⅱ)求二面角M-AB-C的大小;

(Ⅲ)求多面体PMABC的体积.

本题主要考察异面直线所成的角、平面与平面垂直、二面角、棱锥体积等有关知识,考察思维能力和空间想象能力、应用向量知识解决数学问题的能力、化归转化能力和推理运算能力。

解法一:

(Ⅰ)∵平面PMBC⊥平面ABC,AC⊥BC,AC平面ABC

∴AC⊥平面PMBC,

又∵BM平面PMBC

∴AC⊥BM

(Ⅱ)取BC的中点N,则CN=1,连结AN,MN,,

∵平面PCBM⊥平面ABC,平面PCBM平面ABC=BC,PC⊥BC

∴PC⊥平面ABC

,∴,从而

作NH⊥AB于H,连结MH,则由三垂线定理知,AC⊥MH,

从而MHN为二面角M-AB-C的平面角

直线AM与直线PC所成的角为60°

AMN=60°

ACN中,由勾弦定理得AN=

在RtAMN中,MN=AN?cotAMN=

在RtBNH中,NH=BN?sinABC=BN?

在RtMNH中,

故二面角M-AB-C的大小为

(Ⅲ)因多面体PMABC就是四棱锥A-BCPM

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直线AM与直线PC所成的角为60°,又AC=1,BC=2PM=2,∠ACB=90°.
(Ⅰ)求证:AC⊥BM;
(Ⅱ)求二面角M-AB-C的大小;
(Ⅲ)求多面体PMABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,已知AC=PC=PM=1,BC=2,∠ACB=90°.
(1)求证:AC⊥BM;
(2)求证:平面ABM⊥平面ACM;
(3)求二面角M-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC, 直线AM与直线PC所成的角为60°,又AC=1,BC=2PM=2,∠ACB=90°      

 (1)求证:AC⊥BM;

 (2)求二面角M-AB-C的余弦值

(3求P到平面MAB的距离

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省湛江二中高一(上)期末数学试卷(解析版) 题型:解答题

如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,已知AC=PC=PM=1,BC=2,∠ACB=90°.
(1)求证:AC⊥BM;
(2)求证:平面ABM⊥平面ACM;
(3)求二面角M-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市西南师大附中高二(下)期中数学试卷(理科)(解析版) 题型:解答题

如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直线AM与直线PC所成的角为60°,又AC=1,BC=2PM=2,∠ACB=90°.
(Ⅰ)求证:AC⊥BM;
(Ⅱ)求二面角M-AB-C的大小;
(Ⅲ)求多面体PMABC的体积.

查看答案和解析>>

同步练习册答案