精英家教网 > 高中数学 > 题目详情
精英家教网如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,则BC的长为
 
分析:连接OD、BD,由题目中条件:“DE⊥AB,垂足为E,且E是OB的中点”可得三角形BOD是等边三角形,再在直角三角形OCD中,可得OD的长,最后根据题中圆的切线条件再依据切割线定理求得BC的长.
解答:精英家教网解:连接OD、BD,
∵DE⊥AB,垂足为E,且E是OB的中点
∴可得等腰三角形BOD是等边三角形,
∵在直角三角形OCD中,CD=2,
∴可得OD=
2
3
3

∵CD是圆O的切线,∴由切割线定理得,
∴CD2=CB×CA,
即4=CB×(CB+
4
3
3

∴BC=
2
3
3

故填:
2
3
3
点评:此题综合运用了切割线定理、切线的性质定理,本题主要考查与圆有关的比例线段、圆中的切割线定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:扬州大学附属中学高一上学期期末测试卷高一数学[上学期] 题型:044

已知点T是半圆O的直径AB上一点,AB=2、OT=t(0<t<1),以AB为直腰作直角梯形,使垂直且等于AT,使垂直且等于BT,交半圆于P、Q两点,建立如图所示的直角坐标系.

(Ⅰ)写出直线的方程;

(Ⅱ)计算出点P、Q的坐标;

(Ⅲ)证明:沿PT射出的光线,经AB反射后,反射光线通过点Q.

查看答案和解析>>

同步练习册答案