如图:
是⊙
的直径,
垂直于⊙
所在的平面,PA="AC,"
是圆周上不同于
的任意一点,(1) 求证:
平面
。(2) 求二面角 P-BC-A 的大小。![]()
(1)利用线面垂直的性质可得线线垂直,再利用线面垂直的判定定理,可得结论;
(2)∠PCA=450
【解析】
试题分析(1)利用线面垂直的性质可得线线垂直,再利用线面垂直的判定定理,可得结论;(2)利用二面角的求解。
因为因为PA⊥平面ABC,且BC?平面ABC,所以PA⊥BC.又△ABC中,AB是圆O的直径,所以BC⊥AC.、又PA∩AC=A,所以BC⊥平面PAC.
(2)在第一问的基础上,由于
是⊙
的直径,
垂直于⊙
所在的平面,PA="AC,"
是圆周上不同于
的任意一点,那么可知二面角 P-BC-A 的大小450
考点:空间图形的位置关系
点评:本题考查直线与平面垂直的判定定理,平面与平面垂直的判定定理,考查空间图形的位置关系,属于中档题.
科目:高中数学 来源: 题型:
(广东卷理20)如图5所示,四棱锥
的底面
是半径为
的圆的内接四边形,其中
是圆的直径,
,
,
垂
直底面
,
,
分别是
上的点,且
,过点
作
的平行线交
于
.
(1)求
与平面
所成角
的正弦值;
(2)证明:
是直角三角形;
(3)当
时,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
(广东卷理20)如图5所示,四棱锥
的底面
是半径为
的圆的内接四边形,其中
是圆的直径,
,
,
垂
直底面
,
,
分别是
上的点,且
,过点
作
的平行线交
于
.
(1)求
与平面
所成角
的正弦值;
(2)证明:
是直角三角形;
(3)当
时,求
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com