精英家教网 > 高中数学 > 题目详情
在区间[-1,1]上随机取两个数x、y,式子(|x|-1)2+(y-1)2-1的值不小于0的概率为(  )
分析:先要找出[-1,1]中随机地取出两个数所对应的平面区域的面积,及式子(|x|-1)2+(y-1)2-1,且-1≤x≤1,-1≤y≤1的值不小于0对应的平面图形的面积大小,再代入几何概型计算公式,进行解答.
解答:解:如图,当x>0 时,式子(|x|-1)2+(y-1)2-1的值不小于0
即式子(x-1)2+(y-1)2≥1,且-1≤x≤1,-1≤y≤1的对应点落在左边的阴影上,
当x≤0 时,式子(|x|-1)2+(y-1)2-1的值不小于0
即式子(x+1)2+(y-1)2≥1,且-1≤x≤1,-1≤y≤1的对应点落在右边的阴影上,
两部分阴影部分的面积一共为:
S1=2×2-
1
2
×12×π
=4-
π
2

故在区间[-1,1]上随机取两个数x、y,
式子(|x|-1)2+(y-1)2-1的值不小于0的概率为:
P=
S 1
S
=
4-
π
2
4
=1-
π
8

故选C.
点评:本题考查的知识点是几何概型的意义.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=
N(A)
N
求解.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年江西省新余四中高三(上)第一次周周练数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市会昌中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省五校协作体高二(上)联合竞赛数学试卷(文科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市会昌中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省吉安市白鹭洲中学高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

同步练习册答案