精英家教网 > 高中数学 > 题目详情
17.在△ABC中,已知内角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=($\sqrt{3}$,-2sinB),$\overrightarrow{n}$=(2cos2$\frac{B}{2}$-1,cos2B),且$\overrightarrow{m}$∥$\overrightarrow{n}$,B为锐角,b=2,则△ABC面积S△ABC的最大值为(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{5}$

分析 由条件利用两个向量共线的性质求得B=$\frac{π}{3}$,再利用余弦定理、基本不等式,求得△ABC面积S△ABC的最大值

解答 解:由题意可得$\frac{{2cos}^{2}\frac{B}{2}-1}{\sqrt{3}}$=$\frac{cos2B}{-2sinB}$,即 $\frac{cosB}{\sqrt{3}}$=$\frac{cos2B}{-2sinB}$,求得tan2B=-$\sqrt{3}$=$\frac{2tanB}{1{-tan}^{2}B}$,
再结合△ABC中,B为锐角,求得tanB=$\sqrt{3}$,可得B=$\frac{π}{3}$.
再由余弦定理可得b2=4=a2+c2-2ac•cosB≥2ac-ac=ac,∴ac≤4,
故△ABC面积S△ABC =$\frac{1}{2}$ac•sinB≤$\frac{1}{2}$•4•$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
故选:C.

点评 本题主要考查两个向量共线的性质,余弦定理、基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知f(x)=|log2x|,g(x)=f(x)-m,函数y=g(x)有两个零点x1,x2
(1)求 f($\frac{1}{2}$),f(2)的值;
(2)求实数m的取值范围;
(3)求证x1.x2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.天气预报是一档关注度很高的节目,它与我们的生活密切相关,中央电视台天气预报主持人多被冠以“气象先生”,“气象小姐”的头衔,但某位主持人也曾自嘲:“这年头很多人不说真话,而气象台是想说真话,但未必每次都能说准.”,学了概率后,你能给出该主持人自嘲的解释吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x2-5x-6≤0},B={x|x2-3x+2≥0},C={x|2m-1<x<m}.
(1)求A∩B,A∪B;
(2)若C⊆(A∩C),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:
sin30°+sin(30°+120°)+sin(30°+240°),
sin60°+sin(60°+120°)+sin(60°+240°).
观察以上两式及其结果的特点,请写出一个一般的等式,使得上述两式为它的一个特例,并证明你写的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一项打鼾与患心脏病的调查中,共调查了1671人,经过计算K2的观测值k=27.63,根据这一数据分析,我们有理由认为打肝与患心脏病是有关的(填“有关”或“无关”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+3x,若f(x-1)<3,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.确定命题p:2<x<5和q:0<x<5的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知指数函数f(x)=0.2-x,求f(0),f(-3),f($\frac{1}{3}$).

查看答案和解析>>

同步练习册答案