精英家教网 > 高中数学 > 题目详情
函数f(x)=mx2-2x+1有且仅有一个为正实数的零点,则实数m的取值范围是(  )
分析:当m=0时,满足条件.当m≠0时,函数f(x)=mx2-2x+1图象是抛物线,且与y轴的交点为(0,1),则得 ①对称轴x=
1
m
>0,且判别式△=4-4m=0;或者②对称轴x=
1
m
<0.分别求得m的范围,再取并集,即可得实数m的取值范围.
解答:解:当m=0时,令f(x)=-2x+1=0,求得x=
1
2
,满足条件.
当m≠0时,函数f(x)=mx2-2x+1图象是抛物线,且与y轴的交点为(0,1),由f(x)有且仅有一个正实数的零点,
则得 ①对称轴x=
1
m
>0,且判别式△=4-4m=0,求得m=1.
或者②对称轴x=
1
m
<0,解得 m<0.
综上可得,实数m的取值范围{m|m=1,或m<0}.
点评:本题主要考查函数的零点的定义,二次函数的性质应用,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知函数f(x)=mx2+(n+2)x-1是定义在[m,m2-6]上的偶函数,求:①m,n的值   ②函数f(x)的值域 ③求函数f(x-1)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx2-mx-1,对一切实数x,f(x)<0恒成立,则m的范围为(  )
A、(-4,0)B、(-4,0]C、(-∞,-4)∪(0,+∞)D、(-∞,-4)∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
mx2+mx2+1
,x∈R,则实数m的取值范围
[0,4]
[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=mx2-mx-1
(1)若对一切实数x,f(x)<0恒成立,求m的取值范围.
(2)若对一切实数m∈[-2,2],f(x)<-m+5恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案