精英家教网 > 高中数学 > 题目详情
在△ABC中,已知a2+b2=c2-
2
ab,则∠C=(  )
A、30°B、45°
C、150°D、135°
考点:余弦定理
专题:解三角形
分析:利用余弦定理表示出cosC,把已知等式变形后代入求出cosC的值,即可确定出C的度数.
解答: 解:∵在△ABC中,a2+b2=c2-
2
ab,即a2+b2-c2=-
2
ab,
∴cosC=
a2+b2-c2
2ab
=-
2
2

则∠C=135°.
故选:D.
点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
x

(1)判断函数f(x)的奇偶性,并画出函数f(x)的简图;
(2)求出函数f(x)的单调区间;
(3)求函数g(x)=x+
1
x+1
(x≥2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}为等差数列,其前n项和为Sn,已知a1+a4+a7=33,a2+a5+a8=27,若Sn有最大值,则n的值为(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
log2x,x≥0
x(x-2),x<0
,则f[f(-2)]=(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:
4(-2)4
=±2;
②y=x2+1,x∈[-1,2],y的值域是[2,5];
③幂函数图象一定不过第四象限;
④函数f(x)=ax+1-2(a>0,a≠1)的图象过定点(-1,-1);
⑤若lna<1成立,则a的取值范围是(-∞,e).
其中正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系Oxyz中,与点(1,2,-3)关于y轴对称的点为A,则点A与点(-1,-2,-1)的距离为(  )
A、2
B、2
2
C、4
2
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=lg
2+x
2-x
,则f(
x
2
)+f(
2
x
)的定义域为(  )
A、(-2,-1)∪(1,2)
B、(-4,-2)∪(2,4)
C、(-4,0)∪(0,4)
D、(-4,-1)∪(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
tan(2π-α)sin(π+α)cos(6π-α)
sin(
3
2
π+α)cos(
1
2
π+α)

(1)化简f(α);
(2)若sinα=-
2
2
3
,α∈[-π,-
π
2
],求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=alnx+x2+bx(a,b∈R,a≠0,且x=1为f(x)的极值点.
(1)当a=1时,求f(x)的单调递减区间;
(2)若f(x)=0恰有两解,试求实数a的取值范围;
(3)在(1)的条件下,设g(x)=f(x+1)-x2+x+2,证明:
n
k=1
1
g(k)
3n2+5n
(n+1)(n+2)
(n∈N*).

查看答案和解析>>

同步练习册答案