精英家教网 > 高中数学 > 题目详情
函数y=2x3-3x2-12x+1在[0,3]上的最小值为
-19
-19
分析:求出函数的导函数的零点,分析函数在区间[0,3]上的单调性,及两端点的函数值,比较后可得函数y=2x3-3x2-12x+1在[0,3]上的最小值
解答:解:∵y=2x3-3x2-12x+1
∴y′=6x2-6x-12=6(x-2)(x+1)
令y′=0,解得x=-1或x=2
当x∈[0,3]时,列表可得:
x 0 (0,2) 2 (2,3) 3
y′ - 0 +
y 1 -19 -8
由表可得函数y=2x3-3x2-12x+1在[0,3]上的最小值为-19
故答案为:-19
点评:本题考查的知识点是利用导数求闭区间上的函数的最值,其中熟练掌握导数法求最值的方法和步骤是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O,A,直线x=t(0<t<1)与曲线C1,C2分别交于B,D.
(Ⅰ)写出四边形ABOD的面积S与t的函数关系式S=f(t);
(Ⅱ)讨论f(t)的单调性,并求f(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:044

求函数y=2x3-3x+4的导数.?

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于点O、A,直线x=t(0<t<1)与曲线C1、C2分别相交于点B、D.

(1)写出四边形ABOD的面积S与t的函数关系S=f(t);

(2)讨论f(t)的单调性,并求f(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=2x3-3x+4的导数.?

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=2x3-3x+4的导数.?

查看答案和解析>>

同步练习册答案