精英家教网 > 高中数学 > 题目详情
14.设不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{2x-y-2≤0}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域的面积为a,则($\sqrt{x}$-$\frac{2a}{7x}$)2015的展开式中系数最小的项是第1007项.(用数字作答)

分析 作出平面区域,由线性规划的知识可得a值,可得二项展开式,由组合数的知识可得.

解答 解:作出不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{2x-y-2≤0}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域(四边形OABC),
易得OA=OC=1,S△OAC=$\frac{1}{2}×1×1$=$\frac{1}{2}$,
联立$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y-2=0}\end{array}\right.$可解得B(3,4),
B到直线AC:x+y-1=0距离d=$\frac{6}{\sqrt{{1}^{2}+{1}^{2}}}$=3$\sqrt{2}$,
∴S△ABC=$\frac{1}{2}×\sqrt{2}×3\sqrt{2}$=3,
∴面积a=$\frac{1}{2}$+3=$\frac{7}{2}$,
∴($\sqrt{x}$-$\frac{2a}{7x}$)2015=($\sqrt{x}$-$\frac{1}{x}$)2015
∴展开式的通项为Tk+1=${C}_{2015}^{k}$($\sqrt{x}$)2015-k(-$\frac{1}{x}$)k=(-1)k${C}_{2015}^{k}$${x}^{\frac{2015-3k}{2}}$,
∴展开式中系数为(-1)k${C}_{2015}^{k}$,当k=1007时,系数取最小值.
故答案为:1007.

点评 本题考查简单线性规划,涉及二项式定理和作可行域,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设数列{an}满足a1=0,nan+1-(n+1)an=n2+n+1,n∈N*
(1)证明:{$\frac{{a}_{n}+1}{n}$}为等差数列:
(2)求数列{an}的通项公式:
(3)证明:$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆经过点($\frac{\sqrt{6}}{3}$,$\sqrt{3}$)和点($\frac{2\sqrt{2}}{3}$,1),求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知sinα和cosα是方程x2-kx+k+1=0的两根,且π<α<2π,求k,α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率与双曲线x2-y2=1的离心率互为倒数,且C过点P($\sqrt{2},1$).
(1)求C的方程;
(2)若C的左右焦点分别为F1,F2,过F1的直线l与C相交于A,B两点,求△F2AB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设实数x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+3y-16≤0}\end{array}\right.$,若mx-y=0,则实数m的取值范围为[1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数y=f(x)=$\left\{\begin{array}{l}{3x+1,-3<x≤0}\\{2-{x}^{2},0<x<4}\end{array}\right.$.
(1)求函数的定义域;
(2)求f(2)、f(0)、f(-2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn.且a1+2a23a3+…+nan=(n-1)Sn+2n(n∈N*).
(1)求a1,a2的值;
(2)求证:数列{Sn+2}是等比数列;
(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列四对函数中,f(x)与g(x)是同一函数的是(  )
A.$f(x)=\sqrt{x+1}\sqrt{x-1}$,$g(x)=\sqrt{{x^2}-1}$B.$f(x)=\frac{{{x^2}-1}}{x-1}$,g(x)=x+1
C.f(x)=ln(1-x)+ln(1+x),g(x)=ln(1-x2D.f(x)=lgx2,g(x)=2lgx

查看答案和解析>>

同步练习册答案