精英家教网 > 高中数学 > 题目详情

内一点,是椭圆的左焦点,点在椭圆上,则 的最大值为           ,最小值为

 

【答案】

  

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
2
2
)
e=
2
2
,P(x0,y0)是椭圆上任一点,O是坐标原点,△PAB椭圆C的内接三角形,且O是△PAB的重心.
(1)求a、b的值,并证明AB所在的直线方程为x0x+2y0y+1=0;
(2)探索△PAB的面积是否为定值,若是,求出该定值;若不是,求出它的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省高三1月高考模拟数学卷doc 题型:填空题

内一点,是椭圆的左焦点,点在椭圆上,则 的最大值为           ,最小值为

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴市诸暨中学高二(上)期中数学试卷(文科)(解析版) 题型:解答题

已知椭圆过点,P(x,y)是椭圆上任一点,O是坐标原点,△PAB椭圆C的内接三角形,且O是△PAB的重心.
(1)求a、b的值,并证明AB所在的直线方程为xx+2yy+1=0;
(2)探索△PAB的面积是否为定值,若是,求出该定值;若不是,求出它的最大值.

查看答案和解析>>

科目:高中数学 来源:2010年福建省龙岩市高中毕业班第二次质量检查(理) 题型:解答题

 已知,椭圆C的方程为分别为椭圆C的两个焦点,设为椭圆C上一点,存在以为圆心的外切、与内切

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点作斜率为的直线与椭圆C相交于AB两点,与轴相交于点D,若

的值;

(Ⅲ)已知真命题:“如果点T()在椭圆上,那么过点T

的椭圆的切线方程为=1.”利用上述结论,解答下面问题:

已知点Q是直线上的动点,过点Q作椭圆C的两条切线QMQN

MN为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案