精英家教网 > 高中数学 > 题目详情
6.若函数f(x)=ax-lnx在(2,+∞)上单调递增,则实数a的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.$[{\frac{1}{2},+∞})$D.$[{\frac{1}{4},+∞})$

分析 求导函数,利用函数f(x)=ax-lnx在(2,+∞)上单调递增,可得f′(x)≥0在(2,+∞)上恒成立,分离参数,求出函数的最大值,即可求得实数a的取值范围.

解答 解:求导函数可得:f′(x)=a-$\frac{1}{x}$,
∵函数f(x)=ax-lnx在(2,+∞)上单调递增,
∴f′(x)=a-$\frac{1}{x}$≥0在(2,+∞)上恒成立
∴a≥$\frac{1}{x}$
函数y=$\frac{1}{x}$,在(2,+∞)上单调减,
∴x=2时,函数y取得最大值$\frac{1}{2}$
∴a≥$\frac{1}{2}$
实数a的取值范围是:$[\frac{1}{2},+∞)$.
故选:C.

点评 本题考查导数知识的运用,考查函数的单调性,解题的关键是正确运用导数求函数的单调性,利用分离参数法解决恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知集合A={-1,2,3,7},B={-2,-1,3},则A∪B={-2,-1,2,3,7}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$y=\sqrt{3}cosx+sinx$,$x∈[{-\frac{π}{3},π}]$的值域是$[-\sqrt{3},2]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.△ABC的内角A,B,C的对边分别为a,b,c,满足$\frac{a-b+c}{b}≤\frac{c}{a+b-c}$,则角A的范围是(  )
A.$({0,\frac{π}{6}}]$B.$({0,\frac{π}{3}}]$C.$[{\frac{π}{6},π})$D.$[{\frac{π}{3},π})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y-2≤0}\\{y≤1}\end{array}\right.$,则z=-$\frac{1}{3}$x+y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.期中考试后,某教师对其所教的甲、乙两个班的学生试卷进行卷面分析.已知甲、乙两班成绩在80分以上的学生分别有20人和16人,现用分层抽样法从甲、乙两班成绩在80分以上的学生中抽取9人进行分析.
(I)若从所抽取的9人中任选4人进行运算错误分析,求这4人不是同一个班的概率;
(Ⅱ)若从所抽取的9人中任选3人进行题意理解错误分析,记这3人中乙班的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知球面上有三点A,B,C,若AB=18,BC=24,AC=30,且球心到平面ABC的距离等于半径的$\frac{1}{2}$,这个球的半径是10$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|-1≤x≤1),集合B={x|x2-2x≤0),则集合A∩B=(  )
A.[-1,0]B.[-1,2]C.[0,1]D.(一∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=Asin(ωx+φ)+b(A>0,ω>0)的部分图象如图所示,则Aω+b2等于(  )
A.$\frac{2π+3}{3}$B.$\frac{π+2}{2}$C.$\frac{π+3}{3}$D.π+1

查看答案和解析>>

同步练习册答案