精英家教网 > 高中数学 > 题目详情

【题目】已知F1 , F2是椭圆 的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则 (其中e为椭圆C的离心率)的最小值为(
A.
B.
C.
D.

【答案】C
【解析】解:如图所示,由切线的性质可得:OQ⊥PF2 . 又点O为线段F1F2的中点,Q为线段PF2的中点,
∴OQ∥PF1 , ∴PF1⊥PF2
∴|PF1|=2|OQ|=2b,|PF2|=2a﹣2b.
在Rt△PF1F2中,(2b)2+(2a﹣2b)2=(2c)2
化为:b2+(a﹣b)2=c2=a2﹣b2
化为:b=
∴c2=a2﹣b2= =
= = = = ,当且仅当a2= 时取等号.
(其中e为椭圆C的离心率)的最小值为
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆M: + =1(a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B,经过点F的直线l与椭圆M交于C,D两点.
(Ⅰ)求椭圆方程;
(Ⅱ)记△ABD与△ABC的面积分别为S1和S2 , 求|S1﹣S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图在直三棱柱ABC—A1B1C1中,AC=3BC=4AB=5AA1=4,DAB

中点.

(1) 求证: AC⊥BC1

(2) 求证:AC1平面CDB1

(3) 求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知等腰梯形ABCD中,AD∥BC,BC=2AD=2AB=4,将△ABD沿BD折到△A′BD的位置,使平面A′BD⊥平面CBD.

(Ⅰ)求证:CD⊥A′B;
(Ⅱ)试在线段A′C上确定一点P,使得二面角P﹣BD﹣C的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣m(x+1)ln(x+1)(m>0)的最大值是0,函数g(x)=x﹣a(x2+2x)(a∈R). (Ⅰ)求实数m的值;
(Ⅱ)若当x≥0时,不等式f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的值域是,则实数的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC=45°,AD=AP=2, ,E为CD的中点,点F在线段PB上.
(Ⅰ)求证:AD⊥PC;
(Ⅱ)试确定点F的位置,使得直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足: ,且 ,其前n项和.

(1)求证:为等比数列;

(2)记为数列的前n项和.

(i)当时,求

(ii)当时,是否存在正整数,使得对于任意正整数,都有?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.

查看答案和解析>>

同步练习册答案