精英家教网 > 高中数学 > 题目详情
设命题P :关于x 的不等式(a>0且a≠1)的解集为{x|-a<x<2a};命题Q:y=lg(ax2-x+a)的定义域为R,如果P或Q为真,P且Q为假,求a的取值范围.
解:命题P :由不等式
又解集为{x|-a<x<2a},故0<a<1.
命题Q:由y=lg(ax2-x+a)的定义域为R,
又P或Q为真,P且Q为假,
∴P、Q中有且仅有一个为真,
或a≥1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题P:关于x的不等式ax2-ax-2a2>1(a>0且a≠1)的解集为{x|-a<x<2a};命题Q:y=lg(ax2-x+a)的定义域为R.如果P或Q为真,P且Q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:关于x的不等式ax>1(0<a<1,或a>1)的解集是{x|x<0},命题q:函数y=lg(ax2-x+a)的定义域为R.
(1)如果“p且q”为真,求实数a的取值范围;
(2)如果“p且q”为假,“p或q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:关于x的方程4x2+4(a-2)x+1=0有实数根;命题q:函数y=lg(ax2-x+a)的定义域是R.若“p或q”为真,“p且q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:关于x的不等式ax>1的解集是{x|x<0},命题Q:函数y=lg(x2-x+a)的定义域为R,如果P与Q中有且仅有一个正确,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:关于x的不等式2|x-2|<a的解集为∅;命题q:函数y=lg(ax2-x+a)的值域是R.如果命题p和q有且仅有一个正确,求实数a的取值范围.

查看答案和解析>>

同步练习册答案