在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)求异面直线AE与CD所成角的余弦值.
(1)证明:∵PA⊥平面ABCD,∴PA⊥AB,又AB⊥AD.∴AB⊥平面PAD.又∵AE⊥PD,∴PD⊥平面ABE,故BE⊥PD.
(2)解:以A为原点,AB、AD、AP所在直线为坐标轴,建立空间直角坐标系,则点C、D的坐标分别为(a,a,0),(0,2a,0).
∵PA⊥平面ABCD,∠PDA是PD与底面ABCD所成的角,∴∠PDA=30°.
于是,在Rt△AED中,由AD=2a,得AE=a.过E作EF⊥AD,垂足为F,在Rt△AFE中,由AE=a,∠EAF=60°,得AF=,EF=a,∴E(0,a)
于是,={-a,a,0}
设与的夹角为θ,则由
cosθ=
AE与CD所成角的余弦值为.
解析
科目:高中数学 来源: 题型:解答题
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1) 证明:BD⊥平面PAC;
(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△,使得平面⊥平面ABD.
(Ⅰ)求证:平面ABD;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱中,,顶点在底面上的射影恰为点,且.
(Ⅰ)证明:平面平面;
(Ⅱ)求棱与所成的角的大小;
(Ⅲ)若点为的中点,并求出二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
四、附加题:本大题共2小题,每小题10分,共20分。
(20)(本小题满分10分)
已知是边长为1的正方形,分别为上的点,且沿将正方形折成直二面角.
(I)求证:平面平面;
(II)设点与平面间的距离为,试用表示.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知点A(-1,2),B(2,-2),C(0,3),若点M(a,b)是线段AB上的一点(a≠0),则直线CM的斜率的取值
范围是( )
[,1] B.[ ,0)∪(0,1] C.[-1, ] D.(-∞, ]∪[1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com