精英家教网 > 高中数学 > 题目详情
sin13°cos17°+cos13°sin17°=   
【答案】分析:利用两角和的正弦函数公式的逆应用,即可得到特殊角的三角函数值即可.
解答:解:sin13°cos17°+cos13°sin17°=sin30°=
故答案为:
点评:本题是基础题,考查两角和的正弦函数的应用,送分题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年福建省泉州市安溪八中高二(上)期中数学试卷(文科)(解析版) 题型:选择题

计算sin43°cos13°-cos43°sin13°的结果等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴市诸暨中学高一(上)期中数学试卷(解析版) 题型:选择题

计算:sin43°cos13°-sin13°cos43°的值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年贵州省安顺学院附中高三(上)第五次月考数学试卷(理科)(解析版) 题型:解答题

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽省安庆市望江四中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽省安庆市望江四中高三(上)第一次月考数学试卷(文科)(解析版) 题型:解答题

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

同步练习册答案