精英家教网 > 高中数学 > 题目详情
精英家教网如图,在空间直角坐标系中有长方体ABCD-A1B1C1D1,且AB=1,BC=2,AA1=2.求直线B1C与平面B1BDD1夹角的余弦值.
分析:利用已知条件分别求出向量
B1C
和平面B1BDD1的法向量
n
,设直线B1C与平面B1BDD1夹角为θ,由公式cosθ=
1-(cos<
B1C
n
)2
能求出结果.
解答:精英家教网解:如图,在空间直角坐标系中有长方体ABCD-A1B1C1D1
∵AB=1,BC=2,AA1=2,
∴B1(1,0,2),B(1,0,0),C(1,2,0),D(0,2,0),
B1C
=(0,2,-2)
BB1
=(0,0,2),
BD
=(-1,2,0),
设平面B1BDD1的法向量
n
=(x,y,z),
n
BB1
=0
n
BD
=0

2z=0
-x+2y=0
,∴
n
=(2,1,0)

设直线B1C与平面B1BDD1夹角为θ,
则cosθ=
1-(cos<
B1C
n
)2

=
1-(
0+2+0
4+4
4+1
)2

=
10
10

故直线B1C与平面B1BDD1夹角的余弦值为
10
10
点评:本题考查直线与平面所成角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高二上学期数学单元测试4 题型:解答题

 

 
   (理)如图,建立空间直角坐标系数xOyz,棱长为2的正方体OABC—O′A′B′C′被一平面截得四边形MNPQ,其中N、Q分别是BB′、OO′的中点,

   (Ⅰ)求k的值;

   (Ⅱ)求

 

 

 

 

(文)某村计划建造一个室内面积为800m2的矩形蔬菜温室. 在温室内,种植蔬菜时需要沿左、右两侧与前侧内墙各保留1m宽的空地作为通道,后侧内墙不留空地(如图所示),问当温室的长是多少米时,能使蔬菜的种植面积最大?

 
 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案