【题目】已知函数
,曲线
在点
处的切线方程为
.
(1)求函数
的解析式,并证明:
.
(2)已知
,且函数
与函数
的图象交于
,
两点,且线段
的中点为
,证明:
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知直线
的方程为
,曲线
是以坐标原点
为顶点,直线
为准线的抛物线.以坐标原点
为极点,
轴非负半轴为极轴建立极坐标系.
(1)分别求出直线
与曲线
的极坐标方程:
(2)点
是曲线
上位于第一象限内的一个动点,点
是直线
上位于第二象限内的一个动点,且
,请求出
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线
(
为参数),
.以原点
为极点,
轴的非负半轴为极轴建立极坐标系.
(I)写出曲线
与圆
的极坐标方程;
(II)在极坐标系中,已知射线
分别与曲线
及圆
相交于
,当
时,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂预购软件服务,有如下两种方案:
方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;
方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.
(1)设日收费为
元,每天软件服务的次数为
,试写出两种方案中
与
的函数关系式;
(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:![]()
的焦点为
,直线
与
轴的交点为
,与抛物线
的交点为
,且
.
(1)求抛物线
的方程;
(2)过抛物线
上一点
作两条互相垂直的弦
和
,试问直线
是否过定点,若是,求出该定点;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,圆锥的顶点为A,底面的圆心为O,BC是底面圆的一条直径,点D,E在底面圆上,已知
,
.
![]()
(1)证明:
;
(2)若二面角
的大小为
,求直线OC与平面ACE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,统计结果如下表所示,已知这100位顾客中一次购物量超过7件的顾客占
.
一次购物量 | 1至3件 | 4至7件 | 8至11件 | 12至15件 | 16件及以上 |
顾客数(人) |
| 27 | 20 |
| 10 |
结算时间( | 0.5 | 1 | 1.5 | 2 | 2.5 |
(1)确定
,
的值,并求顾客一次购物的结算时间的平均值;
(2)从收集的结算时间不超过
的顾客中,按分层抽样的方法抽取5人,再从这5人中随机抽取2人,求至少有1人的结算时间为
的概率.(注:将频率视为概率)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com