精英家教网 > 高中数学 > 题目详情

【题目】已知函数,曲线在点处的切线方程为.

(1)求函数的解析式,并证明:.

(2)已知,且函数与函数的图象交于两点,且线段的中点为,证明:.

【答案】(1),证明见解析; (2)证明见解析.

【解析】

1)利用切线方程可求得的解析式,令,利用导数可求得,从而证得结论;(2)通过分析法可知要证成立只需证;令,即证:;令,利用导数研究单调性,可知,得到成立;令,利用导数研究单调性,可知,得到成立,可知需证的不等式成立,则原不等式成立.

(1)由题意得:,即

,即,则,解得:

.

,解得:

则函数上单调递减,在上单调递增

,则:

(2)要证成立,只需证:

即证,即:

只需证:

,即证:

要证,只需证:

,则

上为增函数

,即成立;

要证,只需证明:

,则

上为减函数 ,即成立

成立

成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,,且平面.

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的方程为,曲线是以坐标原点为顶点,直线为准线的抛物线.以坐标原点为极点,轴非负半轴为极轴建立极坐标系.

(1)分别求出直线与曲线的极坐标方程:

(2)点是曲线上位于第一象限内的一个动点,点是直线上位于第二象限内的一个动点,且,请求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线为参数),.以原点为极点,轴的非负半轴为极轴建立极坐标系.

(I)写出曲线与圆的极坐标方程;

(II)在极坐标系中,已知射线分别与曲线及圆相交于,当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂预购软件服务,有如下两种方案:

方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;

方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.

(1)设日收费为元,每天软件服务的次数为,试写出两种方案中的函数关系式;

(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线轴的交点为,与抛物线的交点为,且

1)求抛物线的方程;

2)过抛物线上一点作两条互相垂直的弦,试问直线是否过定点,若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,圆锥的顶点为A,底面的圆心为OBC是底面圆的一条直径,点DE在底面圆上,已知.

1)证明:

2)若二面角的大小为,求直线OC与平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,统计结果如下表所示,已知这100位顾客中一次购物量超过7件的顾客占.

一次购物量

13

47

811

1215

16件及以上

顾客数(人)

27

20

10

结算时间(/人)

0.5

1

1.5

2

2.5

1)确定的值,并求顾客一次购物的结算时间的平均值;

2)从收集的结算时间不超过的顾客中,按分层抽样的方法抽取5人,再从这5人中随机抽取2人,求至少有1人的结算时间为的概率.(注:将频率视为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,,四边形和四边形是两个全等的等腰梯形.

(1)求证:四边形为矩形;

(2)若平面平面,求多面体的体积.

查看答案和解析>>

同步练习册答案