精英家教网 > 高中数学 > 题目详情
记具有如下性质的函数的集合为M:对任意的x1、x2∈R,若x12<x22,则f(x1)<f(x2),现给定函数①y=ln(|x|+1)②y=x2ex③y=x4+x3+1④y=
12
x2+cosx
则上述函数中,属于集合M的函数序号是
 
分析:①④利用函数的单调性与函数的奇偶性判断出这两个函数都属于集合M,②③由于是选择题我们可以去特值进行赛选,即可得到答案.
解答:解:①若x12<x22,则|x1|<|x2|,所以ln(|x1|+1)<ln(|x2|+1)即f(x1)<f(x2).所以①符合要求.
②令x1=-
1
2
,x2=-1,则x12<x22.所以f(x1)=
1
e
>f(x2)=
1
e
.所以②不符合要求.
③令x1=-
1
3
,x2=-
1
2
,则x12<x22.所以f(x1)=1-
2
81
>f(x2)=1-
1
16
.所以③不符合要求.
④由题意得y′=x+sinx,设f(x)=y′=x+sinx,所以f′(x)=1+cosx≥0恒成立,所以f(x)=y′=x+sinx是单调减函数.即得到当x>0时y′>0,当x<0时y′<0,所以当x>0时,y=
1
2
x2+cosx
是增函数,当x<0时y=
1
2
x2+cosx
是奇函数.
若x12<x22,则|x1|<|x2|,所以
1
2
|x1|2+cos|x1|
1
2
|x2|2+cos|x2|
,由函数是偶函数可得
1
2
x12+cos|x1|<
1
2
x22+cosx2
.所以④符合要求.
故答案为:①④.
点评:解决此类问题的关键是熟悉理解新定义的内容,根据题意结合函数的一个性质如单调性与奇偶性解决问题,新概念题是近几年高考命题的趋向.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记具有如下性质的函数的集合为M:对任意的x1、x2∈R,若x12<x22,则f(x1)<f(x2),现给定函数
①f(x)=x4+x2+1,②f(x)=x3+x2+1,③f(x)=1-x2,④f(x)=x2+2|x|
则上述函数中,属于集合M的函数序号是
 

查看答案和解析>>

科目:高中数学 来源:2010年江西省吉安市高二下学期期末考试(文科)数学卷 题型:填空题

记具有如下性质的函数的集合为M:对任意的,现给定函数①

则上述函数中,属于集合M的函数序号是         

 

查看答案和解析>>

科目:高中数学 来源:2010年江西省吉安市高二下学期期末考试(文科)数学卷 题型:填空题

记具有如下性质的函数的集合为M:对任意的,现给定函数①

则上述函数中,属于集合M的函数序号是         

 

查看答案和解析>>

科目:高中数学 来源:2010年江西省吉安市高二下学期期末考试数学卷 题型:填空题

记具有如下性质的函数的集合为M:对任意的,现给定函数①

则上述函数中,属于集合M的函数序号是         

 

查看答案和解析>>

同步练习册答案