精英家教网 > 高中数学 > 题目详情
设F1、F2分别是椭圆
x2
4
+y2=1
的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求
PF1
PF2
的最大值和最小值;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,求直线l的斜率k的取值范围.
分析:(Ⅰ)椭圆
x2
4
+y2=1
中,a=2,b=1,c=
3
F1(-
3
,0)
F2(
3
,0)
,设p(x,y),则
PF1
PF2
=(-
3
-x,-y)•(
3
-x,-y)=x2+y2-3,由x∈[-2,2],能求出
PF1
PF2
的最大值和最小值.
(Ⅱ)设直线l:y=kx+2,A(x1,y1),B(x2,y2),联立
y=kx+2
x2
4
+y2=1
,得(k2+
1
4
)x2+4kx+3=0
,由△=(4k)2-4(k2+
1
4
)×3
=4k2-3>0,能求出直线l的斜率k的取值范围.
解答:解:(Ⅰ)椭圆
x2
4
+y2=1
中,a=2,b=1,c=
3

F1(-
3
,0)
F2(
3
,0)

设p(x,y),则
PF1
PF2
=(-
3
-x,-y)•(
3
-x,-y)=x2+y2-3,
∵x∈[-2,2],∴当x=0,即点P为椭圆短轴端点时,
PF1
PF2
有最小值-2.
当x=±2,即点P为椭圆长轴端点时,
PF1
PF2
有最大值1.
(Ⅱ)∵直线x=0不满足题设条件,
∴设直线l:y=kx+2,A(x1,y1),B(x2,y2),
联立
y=kx+2
x2
4
+y2=1
,消去y,得(k2+
1
4
)x2+4kx+3=0

∵过定点M(0,2)的直线l与椭圆交于不同的两点A、B,
△=(4k)2-4(k2+
1
4
)×3
=4k2-3>0,
解得k>
3
2
,或k<-
3
2
点评:本题考查直线与椭圆的位置关系的综合运用,具体涉及到椭圆的简单性质、韦达定理、根与系数的关系等基本知识点,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,若在直线x=
a2
c
上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是
3
3
,1)
3
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点,若椭圆C上的一点A(1,
3
2
)到F1,F2的距离之和为4.
(1)求椭圆方程;
(2)若M,N是椭圆C上两个不同的点,线段MN的垂直平分线与x轴交于点P,求证:|
OP
|<
1
2

(3)若M,N是椭圆C上两个不同的点,Q是椭圆C上不同于M,N的任意一点,若直线QM,QN的斜率分别为KQM•KQN.问:“点M,N关于原点对称”是KQM•KQN=-
3
4
的什么条件?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•南汇区二模)设F1、F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,其右焦点是直线y=x-1与x轴的交点,短轴的长是焦距的2倍.
(1)求椭圆的方程;
(2)若P是该椭圆上的一个动点,求
PF1
PF2
的最大值和最小值;
(3)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设椭圆E:
x2
a2
+
y2
1-a2
=1
的焦点在x轴上
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•南汇区二模)设F1、F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,其右焦点是直线y=x-1与x轴的交点,短轴的长是焦距的2倍.
(1)求椭圆的方程;
(2)若P是该椭圆上的一个动点,求
PF1
PF2
的最大值和最小值;
(3)若P是该椭圆上的一个动点,点A(5,0),求线段AP中点M的轨迹方程.

查看答案和解析>>

同步练习册答案