精英家教网 > 高中数学 > 题目详情
若直线ax+by+4=0和圆x2+y2=4没有公共点,则过点(a,b)的直线与椭圆+=1的公共点个数为( )
A.0
B.1
C.2
D.需根据a,b的取值来确定
【答案】分析:根据直线ax+by+4=0和圆x2+y2=4没有公共点,可推断点(a,b)是以原点为圆心,2为半径的圆内的点,根据圆的方程和椭圆方程可知圆x2+y2=4内切于椭圆,进而可知点P是椭圆内的点,进而判断可得答案.
解答:解:因为直线ax+by+4=0和圆x2+y2=4没有公共点,
所以原点到直线ax+by+4=0的距离d=>2,
所以a2+b2<4,
所以点P(a,b)是在以原点为圆心,2为半径的圆内的点.
∵椭圆的长半轴 3,短半轴为 2
∴圆x2+y2=4内切于椭圆
∴点P是椭圆内的点
∴过点P(a,b)的一条直线与椭圆的公共点数为2.
故选C.
点评:本题主要考查了直线与圆、直线与圆锥曲线的关系,以及点到直线的距离公式,解题的关键是确定点P是椭圆内的点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下命题:
①命题“若x≥2且y≥3,则x+y≥5”的否命题为“若x<2且y<3,则x+y<5”;
②若直线ax+by=4与圆x2+y2=4没有公共点,则点(a,b)一定在圆x2+y2=4外;
③“?x0∈R,使得ax02+(a-3)x0+1≤0”是假命题,则1<a<9;
④某人向一个圆内投镖,则镖扎到该圆的内接正三角形区域内的概率为
3
3

其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•枣庄一模)有以下四个命题:
①若x,y∈R,i为虚数单位,且(x-2)i-y=-1+i,则(1+i)x+y的值为-4;
②将函数f(x)=cos(2x+
π
3
)+1的图象向左平移
π
6
个单位后,对应的函数是偶函数;
③若直线ax+by=4与圆x2+y2=4没有交点,则过点(a,b)的直线与椭圆
x2
9
+
y2
4
=1有两个交点;
④在做回归分析时,残差图中残差点分布的带状区域的宽度越窄相关指数越小.
其中所有正确命题的序号为
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)若直线ax+by+4=0和圆x2+y2=4没有公共点,则过点(a,b)的直线与椭圆
x2
9
+
y2
4
=1的公共点个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
①不等式|2x-1|>3的解集是{x|x>2};
②若直线ax+by=4与圆x2+y2=4没有公共点,则点(a,b)一定在圆x2+y2=4外;
③“?x0∈R,使得ax02+(a-3)x0+1≤0”是假命题,则1<a<9;
④某人向一个圆内投镖,则镖扎到该圆的内接正三角形区域内的概率为
3
3
.其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源:2010年山东省潍坊市高考数学模拟冲刺试卷(理科)(解析版) 题型:解答题

给出以下命题:
①不等式|2x-1|>3的解集是{x|x>2};
②若直线ax+by=4与圆x2+y2=4没有公共点,则点(a,b)一定在圆x2+y2=4外;
③“?x∈R,使得ax2+(a-3)x+1≤0”是假命题,则1<a<9;
④某人向一个圆内投镖,则镖扎到该圆的内接正三角形区域内的概率为.其中正确命题的序号是   

查看答案和解析>>

同步练习册答案