【题目】已知函数
(
),若不等式
对任意实数
恒成立,则实数
的取值范围是( )
A.
B.![]()
C.
D.![]()
【答案】D
【解析】
根据题意,分析可得函数f(x)为奇函数且为增函数,进而可以将原问题转化为m
对任意实数t≥1恒成立,由基本不等式的性质分析可得
有最小值
,进而分析可得m的取值范围.
根据题意,函数f(x)=x3+3x,其定义域为R,关于原点对称,
有f(﹣x)=﹣(x3+3x)=﹣f(x),则f(x)为奇函数,
又由f′(x)=3x2+3>0,则f(x)为增函数,
若不等式f(2m+mt2)+f(4t)<0对任意实数t≥1恒成立,
则f(2m+mt2)<﹣f(4t),即2m+mt2<﹣4t对任意实数t≥1恒成立,
2m+mt2<﹣4tm
,即m
,
又由t≥1,则t
2
,则
有最小值
,当且仅当
时等号成立
若m
对任意实数t≥1恒成立,必有m
;
即m的取值范围为(﹣∞,
);
故选:D.
科目:高中数学 来源: 题型:
【题目】下图1,是某设计员为一种商品设计的平面logo样式.主体是由内而外的三个正方形构成.该图的设计构思如图2,中间正方形
的四个顶点,分别在最外围正方形ABCD的边上,且分所在边为a,b两段.设中间阴影部分的面积为
,最内正方形
的面积为
.当
,且
取最大值时,定型该logo的最终样式,则此时a,b的取值分别为_____________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
![]()
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在极坐标系中,O为极点,点
在曲线
上,直线l过点
且与
垂直,垂足为P.
(1)当
时,求
及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是定义在R上的两个周期函数,
的周期为4,
的周期为2,且
是奇函数.当
时,
,
,其中k>0.若在区间(0,9]上,关于x的方程
有8个不同的实数根,则k的取值范围是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com