【题目】已知函数(),若不等式对任意实数恒成立,则实数的取值范围是( )
A.B.
C.D.
【答案】D
【解析】
根据题意,分析可得函数f(x)为奇函数且为增函数,进而可以将原问题转化为m对任意实数t≥1恒成立,由基本不等式的性质分析可得有最小值,进而分析可得m的取值范围.
根据题意,函数f(x)=x3+3x,其定义域为R,关于原点对称,
有f(﹣x)=﹣(x3+3x)=﹣f(x),则f(x)为奇函数,
又由f′(x)=3x2+3>0,则f(x)为增函数,
若不等式f(2m+mt2)+f(4t)<0对任意实数t≥1恒成立,
则f(2m+mt2)<﹣f(4t),即2m+mt2<﹣4t对任意实数t≥1恒成立,
2m+mt2<﹣4tm,即m,
又由t≥1,则t2,则有最小值,当且仅当时等号成立
若m对任意实数t≥1恒成立,必有m;
即m的取值范围为(﹣∞,);
故选:D.
科目:高中数学 来源: 题型:
【题目】下图1,是某设计员为一种商品设计的平面logo样式.主体是由内而外的三个正方形构成.该图的设计构思如图2,中间正方形的四个顶点,分别在最外围正方形ABCD的边上,且分所在边为a,b两段.设中间阴影部分的面积为,最内正方形的面积为.当,且取最大值时,定型该logo的最终样式,则此时a,b的取值分别为_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.
(1)当时,求及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是定义在R上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中k>0.若在区间(0,9]上,关于x的方程有8个不同的实数根,则k的取值范围是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com