精英家教网 > 高中数学 > 题目详情
已知f(x)=(x+1)•|x-1|,若关于x的方程f(x)=x+m有三个不同的实数解,求实数m的取值范围?
分析:关于x的方程f(x)=x+m有三个不同的实数解,即函数f(x)=(x+1)•|x-1|=
-x2+1,x≤1
x2-1,x>1
和y=x+m的图象有三个交点,在同一坐标中画出函数f(x)=(x+1)•|x-1|=
-x2+1,x≤1
x2-1,x>1
和y=x+m的图象,数形结合可得答案.
解答:解:在同一坐标系中画出函数f(x)=(x+1)•|x-1|=
-x2+1,x≤1
x2-1,x>1
和y=x+m的图象如图所示;
根据f′(x)=
-2x ,x≤1
2x ,x>1
,令f′(x)=0,解得x=-
1
2

此时切点坐标为(-
1
2
3
4
),切线方程为y=x+
5
4

故当-1<x<
5
4
时,函数f(x)和y=x+m的图象有三个零点
此时关于x的方程f(x)=x+m有三个不同的实数解,
即满足条件的实数m的取值范围为(-1,
5
4
点评:本题考查的知识点是根的存在性及根的个数判断,利用数形结合思想解答函数的零点是求函数零点个数及位置最常用的方法,一定要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f (x)=sin (x+
π
2
),g (x)=cos (x-
π
2
),则下列命题中正确的是(  )
A、函数y=f(x)•g(x)的最小正周期为2π
B、函数y=f(x)•g(x)是偶函数
C、函数y=f(x)+g(x)的最小值为-1
D、函数y=f(x)+g(x)的一个单调增区间是[-
4
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1,x<0
2,x≥0
,g(x)=
3f(x-1)-f(x-2)
2

(1)当1≤x<2时,求g(x);
(2)当x∈R时,求g(x)的解析式,并画出其图象;
(3)求方程xf[g(x)]=2g[f(x)]的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f (x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化简f (x)的解析式;
(2)若0≤θ≤π,求θ使函数f (x)为偶函数;
(3)在(2)成立的条件下,求满足f (x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案