精英家教网 > 高中数学 > 题目详情
已知向量=(cosx,1-asinx),=(cosx,2),设f(x)=,且函数f(x)的最大值为g(a).
(Ⅰ)求函数g(a)的解析式.
(Ⅱ)设0≤θ≤2π,求函数(2cosθ+1)的最大值和最小值以及对应的值.
【答案】分析:(I)利用向量的数量积及其对a分类讨论即可得出.
(II)由θ的范围即可得出2cosθ+1的范围,进而利用(I)即可得出最值.
解答:解:(Ⅰ)由题意知f(x)==cos2x+2-2asinx=-sin2x-2asinx+3,
令t=sinx,则-1≤t≤1,从而h(t)=-t2-2at+3=-(t+a)2+a2+3,t∈[-1,1].
对称轴为t=-a.
①当-a≤-1,即a≥1时,
h(t)=-t2-2at+3在t∈[-1,1]上单调递减,h(t)max=h(-1)=2a+2;
②当-1<-a<1,即-1<a<1时,h(t)在[-1,-a]上单调递增,在[-a,1]上单调递减,∴
③-a≥1,即a≤-1,h(t)=-t2-2at+3在t∈[-1,1]上单调递增,h(t)max=h(1)=-2a+2;
综上,
(2)由0≤θ<2π知,-1≤2cosθ+1≤3.
又因为g(a)在[-1,0]上单调递减,在[0,3]上单调递增,
所以g(2cosθ+1)max=max{g(-1),g(3)}=g(3)=8.θ=0;
g(2cosθ+1)min=g(0)=3,
点评:熟练掌握向量的数量积运算、二次函数的单调性、分类讨论的思想方法等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0).
(Ⅰ)若x=
π
6
,求向量
a
c
的夹角;
(Ⅱ)当x∈[
π
2
8
]
时,求函数f(x)=2
a
b
+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2sinx-cosx,sinx),
n
=(cosx-sinx,0)
,且函数f(x)=(
m
+2
n
)
m.

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)将函数f(x)向左平移
π
4
个单位得到函数g(x),求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(
1
2
f(x),cosx),
m
n

(I)求f(x)的单调增区间及在[-
π
6
π
4
]
内的值域;
(II)已知A为△ABC的内角,若f(
A
2
)=1+
3
,a=1,b=
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(cosx,-f(x))
,且
m
n

(1)求f(x)的单调区间;
(2)当x∈[0, 
π
2
]
时,函数g(x)=a[f(x)-
1
2
]+b
的最大值为3,最小值为0,试求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx-cosx,1)
n
=(cosx,
1
2
)
,若f(x)=
m
n

(Ⅰ) 求函数f(x)的最小正周期;
(Ⅱ) 已知△ABC的三内角A、B、C的对边分别为a、b、c,且a=3,f(
A
2
+
π
12
)=
3
2
(A为锐角),2sinC=sinB,求A、c、b的值.

查看答案和解析>>

同步练习册答案