精英家教网 > 高中数学 > 题目详情
以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是(  )
A、ρ=2cos(θ-
π
4
)
B、ρ=2sin(θ-
π
4
)
C、ρ=2cos(θ-1)
D、ρ=2sin(θ-1)
分析:设圆上任意一点的极坐标为(ρ,θ),直接利用极径的长为1得到关于极角与极径的关系,化简即得圆的极坐标方程.
解答:解:设圆上任意一点的极坐标为(ρ,θ),则由半径为1得,
(ρcosθ-cosl)2+(ρsinθ-sinl)2
=1

化简得,所求方程是ρ=2cos(θ-1).
答案选C.
点评:本题考查点的极坐标方程的求法,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题) 以极坐标系中的点(1,
π6
)为圆心,1为半径的圆的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

15、(坐标系与参数方程选做题)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是
ρ=2cos(θ-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(坐标系与参数方程选做题) 以极坐标系中的点(1,
π
6
)为圆心,1为半径的圆的方程是______.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年广东省深圳外国语学校高三第三次质量检测数学试卷(理科)(解析版) 题型:解答题

(坐标系与参数方程选做题) 以极坐标系中的点(1,)为圆心,1为半径的圆的方程是   

查看答案和解析>>

同步练习册答案