精英家教网 > 高中数学 > 题目详情
某舰艇在A处测得遇险渔船在北偏东45°距离为10海里的C处,此时的值,该渔船演北偏东105°方向,一每小时9海里的速度向一小岛靠近,舰艇时速21海里,则舰艇到达渔船的最短时间是
 
分钟.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:设两船在B点碰头,设舰艇到达渔船的最短时间是x小时,由题设知AC=10,AB=21x,BC=9x,∠ACB=120°,由余弦定理,知(21x)2=100+(9x)2-2×10×9x×cos120°,由此能求出舰艇到达渔船的最短时间.
解答: 解:设两船在B点碰头,由题设作出图形,
设舰艇到达渔船的最短时间是x小时,
则AC=10,AB=21x,BC=9x,∠ACB=120°,
由余弦定理,知(21x)2=100+(9x)2-2×10×9x×cos120°,
整理,得36x2-9x-10=0,
解得x=
2
3
,或x=-12(舍).
即舰艇到达渔船的最短时间是40分钟.
故答案为:40.
点评:本题考查解三角形在生产实际中的应用,考查运算求解能力,推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的值域是(  )
A、[-1,+∞)
B、[-1,
2
]
C、(0,
2
]
D、(1,
2
+
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2.
(1)若x∈R,判断并证明函数的单调性;
(2)若x<1,判断并证明函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

若0<m<n,则下列结论正确的是(  )
A、2m>2n
B、log2m>log2n
C、log
1
2
m
log
1
2
n
D、(
1
2
)m
(
1
2
)n

查看答案和解析>>

科目:高中数学 来源: 题型:

若?x≥1,不等式x+
1
x+1
≥a恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

式子log29•log32的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ),α、β∈R且α、β、(α+β均不等于
π
2
+kπ,k∈Z).
(1)求|
b
+
c
|的最大值;
(2)当
a
b
,且
a
⊥(
b
-2
c
)时,求tanα-tanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为△ABC的三个内角A、B、C的对边,向量
m
=(2sinB,2-cos2B),
n
=(2sin2
π
4
+
B
2
),-1),
m
n
,a=
3
,b=1.
(1)求角B的大小;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[-1,1]上的奇函数f(x)在[0,1]上是增函数,若f(x)+f(x-
1
2
)<0,求x的取值范围.

查看答案和解析>>

同步练习册答案