精英家教网 > 高中数学 > 题目详情
7.如图,△ABC的内切圆I与边AB、AC分别切于点D、E,O为△BCI的外心.证明:∠ODB=∠OEC.

分析 证明A,B,O,C 四点共圆,△OAD≌△OAE,即可证明结论.

解答 证明:由O是△BCI的外心,知∠BOI=2∠BCI=∠BCA.同理,∠COI=∠CBA.
则∠BOC=∠BOI+∠COI=∠BCA+∠CBA=180°-∠BAC.
于是,A,B,O,C 四点共圆.
由OB=OC,知∠BAO=∠CAO.
因为AD=AE,AO=AO,
所以,△OAD≌△OAE.因此,∠ODA=∠OEA.
故∠ODB=∠OEC.

点评 本题考查四点共圆,三角形全等的证明,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.观察下列等式:
①sin210°+cos240°+sin10°cos40°=$\frac{3}{4}$;
②sin26°+cos236°+sin6°cos36°=$\frac{3}{4}$.
由上面两题的结构规律,你是否能提出一个猜想?并证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.执行如图程序框图,如果输入的x,t均为2,则输出的S=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.运行如图所示的程序框图,若输出结果为$\frac{6}{7}$,则判断框中应该填的条件是(  )
A.k>5B.k>6C.k>7D.k>8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行下面的程序框图,则输出的m的值为(  )
A.9B.7C.5D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数$f(x)={cos^2}x+\frac{1}{2}sin(2x+\frac{π}{2})-\frac{1}{2}$.
(1)求f(x)在$(\frac{π}{6},\frac{2π}{3})$上的值域.
(2)设A,B,C为△ABC的三个内角,若角C满足$f(\frac{C}{2})=\frac{{\sqrt{2}}}{2}$且边$c=\sqrt{2}a$,求角A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.化简再求值:$({\frac{a^2}{{{a^2}+2ab+{b^2}}}-\frac{a}{a+b}})÷({\frac{a^2}{{{a^2}-{b^2}}}-\frac{b}{a-b}-1})$,其中a=$\sqrt{3}$+2,b=$\sqrt{3}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.变量 x、y满足线性约束条件$\left\{\begin{array}{l}{3x+y-2≤0}\\{y-x≤2}\\{y≥x-1}\end{array}\right.$,则目标函数z=(k+1)x-y,仅在点(0,2)取得最小值,则k的取值范围是(  )
A.k<-4B.-4<k<0>C.-2<k<0D.k>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,则f(f(3))=$\frac{13}{9}$,方程f(f(x))=$\frac{1}{4}$的解集为-$\sqrt{7}$.

查看答案和解析>>

同步练习册答案