精英家教网 > 高中数学 > 题目详情

P是以F1F2为焦点的椭圆上的任意一点,若PF1F2=αPF2F1=β,且cosα=sin(α+β)=则此椭圆的离心率为

 

【答案】

【解析】

试题分析:,所以(舍去).,由正弦定理得:

考点:1、椭圆的定义及离心率;2、三角函数;3、正弦定理.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P是以F1、F2为焦点的椭圆
x2
b2
+
y2
a2
=1 (a>b>0)
上的任一点,∠F1PF2最大值是120°,求椭圆离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是以F1,F2为焦点的椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=
1
2
,则此椭圆的离心率为(  )
A、
1
2
B、
2
3
C、
1
3
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是以F1,F2为焦点的双曲线
x2
a2
-
y2
b2
=1
上的一点,若
PF1
PF2
=0,tan∠PF1F2=2,则此双曲线的离心率为(  )
A、
5
B、5
C、2
5
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若P是以F1,F2为焦点的椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的一点,且
PF1
PF2
=0
tan∠PF1F2=
1
2
,则此椭圆的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是以F1,F2为焦点的椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上一点,且
PF1
PF2
=0
tan∠PF1F2=
1
2
,则该椭圆的离心率等于
5
3
5
3

查看答案和解析>>

同步练习册答案