精英家教网 > 高中数学 > 题目详情
已知:0<α<
π
2
,0<β<
π
2
,且sin(α+β)=2sinα,求证:α<β.
证明:方法一(反证法)
假设α=β(且均为锐角),由于sin(α+β)=2sinα,
∴sinαcosβ+cosαsinβ=2sinα
∴2sinαcosα=2sinα
∴cos α=1,
这与0<α<
π
2
,相矛盾,故α≠β.
假设α>β,∵sinαcosβ+cosαsinβ=2sin α.
∴cosαsinβ=sinα(2-cos β),即
sinα
sinβ
=
cosα
2-cosβ

由于
π
2
>α>β>0,易知上式左边大于1,而右边小于1,不能成立,故α≤β.
因为α≠β且α≤β,只能是α<β.
方法二(综合法)由已知sinαcosβ+cosαsinβ=2sinα,
∵0<α<
π
2
,0<β<
π
2

∴0<cosα<1,0<cosβ<1.
∴2sinα=sinαcosβ+cosαsinβ<sinα+sinβ,
即sinα<sinβ,∴α<β.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A(x1,y1),B(x2,y2)是函数f(x)=
2x
1-2x
,x≠
1
2
-1,x=
1
2
的图象上的任意两点(可以重合),点M在直线x=
1
2
上,且
AM
=
MB

(Ⅰ)求x1+x2的值及y1+y2的值
(Ⅱ)已知S1=0,当n≥2时,Sn=f(
1
n
)
+f(
2
n
)
+f(
3
n
)
+…+f(
n-1
n
)
,求Sn
(Ⅲ)在(Ⅱ)的条件下,设an=2Sn,Tn为数列{an}的前n项和,若存在正整数c、m,使得不等式
Tm-c
Tm+1-c
1
2
成立,求c和m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M={0,1,2},N={x|x=2a,a∈M},则M∪N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(x1,y1),B(x2,y2)是函数f(x)=
2x
1-2x
,x≠
1
2
-1,x=
1
2
的图象上的任意两点,点M在直线x=
1
2
上,且
AM
=
MB

(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,当n≥2时,Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
)
,设an=2Sn,Tn为数列{an}的前n项和,若存在正整数c,m,使得不等式
Tm-c
Tm+1-c
1
2
成立,求c和m的值.
(3)在(2)的条件下,设bn=31-Sn,求所有可能的乘积bi•bj(1≤i≤j≤n)的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定集合A、B,定义:A*B={ x|x∈A或x∈B,但x∉A∩B},又已知A={0,1,2},B={1,2,3},用列举法写出A*B=
{0,3}
{0,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={0,1,2},B={0,a2,2},若A=B,则a=
±1
±1

查看答案和解析>>

同步练习册答案